These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
188 related articles for article (PubMed ID: 12177506)
1. In vivo interactions between photosynthesis, mitorespiration, and chlororespiration in Chlamydomonas reinhardtii. Cournac L; Latouche G; Cerovic Z; Redding K; Ravenel J; Peltier G Plant Physiol; 2002 Aug; 129(4):1921-8. PubMed ID: 12177506 [TBL] [Abstract][Full Text] [Related]
2. Interplay between non-photochemical plastoquinone reduction and re-oxidation in pre-illuminated Chlamydomonas reinhardtii: a chlorophyll fluorescence study. Houyoux PA; Ghysels B; Lecler R; Franck F Photosynth Res; 2011 Oct; 110(1):13-24. PubMed ID: 21948601 [TBL] [Abstract][Full Text] [Related]
3. Electron flow between photosystem II and oxygen in chloroplasts of photosystem I-deficient algae is mediated by a quinol oxidase involved in chlororespiration. Cournac L; Redding K; Ravenel J; Rumeau D; Josse EM; Kuntz M; Peltier G J Biol Chem; 2000 Jun; 275(23):17256-62. PubMed ID: 10748104 [TBL] [Abstract][Full Text] [Related]
4. Flexibility in photosynthetic electron transport: a newly identified chloroplast oxidase involved in chlororespiration. Cournac L; Josse EM; Joët T; Rumeau D; Redding K; Kuntz M; Peltier G Philos Trans R Soc Lond B Biol Sci; 2000 Oct; 355(1402):1447-54. PubMed ID: 11127998 [TBL] [Abstract][Full Text] [Related]
5. The slow S to M rise of chlorophyll a fluorescence reflects transition from state 2 to state 1 in the green alga Chlamydomonas reinhardtii. Kodru S; Malavath T; Devadasu E; Nellaepalli S; Stirbet A; Subramanyam R; Govindjee Photosynth Res; 2015 Aug; 125(1-2):219-31. PubMed ID: 25663564 [TBL] [Abstract][Full Text] [Related]
6. The redox state of the plastoquinone pool directly modulates minimum chlorophyll fluorescence yield in Chlamydomonas reinhardtii. Hohmann-Marriott MF; Takizawa K; Eaton-Rye JJ; Mets L; Minagawa J FEBS Lett; 2010 Mar; 584(5):1021-6. PubMed ID: 20122933 [TBL] [Abstract][Full Text] [Related]
7. Photosynthetic apparatus organization and function in the wild type and a chlorophyll b-less mutant of Chlamydomonas reinhardtii. Dependence on carbon source. Polle JE; Benemann JR; Tanaka A; Melis A Planta; 2000 Aug; 211(3):335-44. PubMed ID: 10987551 [TBL] [Abstract][Full Text] [Related]
8. Chlororespiration and the process of carotenoid biosynthesis. Bennoun P Biochim Biophys Acta; 2001 Aug; 1506(2):133-42. PubMed ID: 11522255 [TBL] [Abstract][Full Text] [Related]
9. Plastoquinone pool redox state and control of state transitions in Chlamydomonas reinhardtii in darkness and under illumination. Virtanen O; Tyystjärvi E Photosynth Res; 2023 Jan; 155(1):59-76. PubMed ID: 36282464 [TBL] [Abstract][Full Text] [Related]
10. High light induced changes in organization, protein profile and function of photosynthetic machinery in Chlamydomonas reinhardtii. Nama S; Madireddi SK; Devadasu ER; Subramanyam R J Photochem Photobiol B; 2015 Nov; 152(Pt B):367-76. PubMed ID: 26388469 [TBL] [Abstract][Full Text] [Related]
11. Light-Harvesting Strategy during CO Ueno Y; Shimakawa G; Miyake C; Akimoto S J Phys Chem Lett; 2018 Mar; 9(5):1028-1033. PubMed ID: 29425442 [TBL] [Abstract][Full Text] [Related]
12. Reversal of the inhibition of photosynthesis by herbicides affecting hydroxyphenylpyruvate dioxygenase by plastoquinone and tocopheryl derivatives in Chlamydomonas reinhardtii. Trebst A; Depka B; Jäger J; Oettmeier W Pest Manag Sci; 2004 Jul; 60(7):669-74. PubMed ID: 15260297 [TBL] [Abstract][Full Text] [Related]
13. Inhibition of chlororespiration by myxothiazol and antimycin A in Chlamydomonas reinhardtii. Ravenel J; Peltier G Photosynth Res; 1991 Jun; 28(3):141-8. PubMed ID: 24414973 [TBL] [Abstract][Full Text] [Related]
14. Biochemical characterization of photosystem I-associated light-harvesting complexes I and II isolated from state 2 cells of Chlamydomonas reinhardtii. Takahashi H; Okamuro A; Minagawa J; Takahashi Y Plant Cell Physiol; 2014 Aug; 55(8):1437-49. PubMed ID: 24867888 [TBL] [Abstract][Full Text] [Related]
15. Characterization of the transient fluorescence wave phenomenon that occurs during H2 production in Chlamydomonas reinhardtii. Krishna PS; Morello G; Mamedov F J Exp Bot; 2019 Nov; 70(21):6321-6336. PubMed ID: 31504725 [TBL] [Abstract][Full Text] [Related]
16. Fluorescence lifetime imaging microscopy of Chlamydomonas reinhardtii: non-photochemical quenching mutants and the effect of photosynthetic inhibitors on the slow chlorophyll fluorescence transient. Holub O; Seufferheld MJ; Gohlke C; Govindjee ; Heiss GJ; Clegg RM J Microsc; 2007 May; 226(Pt 2):90-120. PubMed ID: 17444940 [TBL] [Abstract][Full Text] [Related]
17. Strategies to Study Dark Growth Deficient or Slower Mutants in Chlamydomonas reinhardtii. Yang H; Han F; Wang Y; Yang W; Tu W Methods Mol Biol; 2021; 2297():125-140. PubMed ID: 33656676 [TBL] [Abstract][Full Text] [Related]
18. Isolation of a psaF-deficient mutant of Chlamydomonas reinhardtii: efficient interaction of plastocyanin with the photosystem I reaction center is mediated by the PsaF subunit. Farah J; Rappaport F; Choquet Y; Joliot P; Rochaix JD EMBO J; 1995 Oct; 14(20):4976-84. PubMed ID: 7588626 [TBL] [Abstract][Full Text] [Related]
20. LHCSR1-dependent fluorescence quenching is mediated by excitation energy transfer from LHCII to photosystem I in Kosuge K; Tokutsu R; Kim E; Akimoto S; Yokono M; Ueno Y; Minagawa J Proc Natl Acad Sci U S A; 2018 Apr; 115(14):3722-3727. PubMed ID: 29555769 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]