These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

61 related articles for article (PubMed ID: 121777)

  • 1. Muscle fields and response properties of primate corticomotoneuronal cells.
    Fetz EE; Cheney PD
    Prog Brain Res; 1979; 50():137-46. PubMed ID: 121777
    [No Abstract]   [Full Text] [Related]  

  • 2. Muscle fields of primate corticomotoneuronal cells.
    Fetz EE; Cheney PD
    J Physiol (Paris); 1978; 74(3):239-45. PubMed ID: 102773
    [No Abstract]   [Full Text] [Related]  

  • 3. Activity of forelimb motor units and corticomotoneuronal cells during ramp-and-hold torque responses: comparisons with oculomotor cells.
    Fetz EE; Cheney PD; Palmer SS
    Prog Brain Res; 1986; 64():133-41. PubMed ID: 3523601
    [No Abstract]   [Full Text] [Related]  

  • 4. Corticomotoneuronal cells are "functionally tuned".
    Griffin DM; Hoffman DS; Strick PL
    Science; 2015 Nov; 350(6261):667-70. PubMed ID: 26542568
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Separate cortical systems for control of joint movement and joint stiffness: reciprocal activation and coactivation of antagonist muscles.
    Humphrey DR; Reed DJ
    Adv Neurol; 1983; 39():347-72. PubMed ID: 6419553
    [No Abstract]   [Full Text] [Related]  

  • 6. Postspike facilitation of forelimb muscle activity by primate corticomotoneuronal cells.
    Fetz EE; Cheney PD
    J Neurophysiol; 1980 Oct; 44(4):751-72. PubMed ID: 6253604
    [No Abstract]   [Full Text] [Related]  

  • 7. Reciprocal effect of single corticomotoneuronal cells on wrist extensor and flexor muscle activity in the primate.
    Cheney PD; Kasser R; Holsapple J
    Brain Res; 1982 Sep; 247(1):164-8. PubMed ID: 6127144
    [No Abstract]   [Full Text] [Related]  

  • 8. Supplementary motor area and premotor area of monkey cerebral cortex: functional organization and activities of single neurons during performance of a learned movement.
    Brinkman C; Porter R
    Adv Neurol; 1983; 39():393-420. PubMed ID: 6419554
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Do corticomotoneuronal cells predict target muscle EMG activity?
    Griffin DM; Hudson HM; Belhaj-Saïf A; McKiernan BJ; Cheney PD
    J Neurophysiol; 2008 Mar; 99(3):1169-986. PubMed ID: 18160426
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fusimotor loop properties and involvement during voluntary movement.
    Smith JL
    Exerc Sport Sci Rev; 1976; 4():297-333. PubMed ID: 828578
    [No Abstract]   [Full Text] [Related]  

  • 11. Direct cortical control of muscle activation in voluntary arm movements: a model.
    Todorov E
    Nat Neurosci; 2000 Apr; 3(4):391-8. PubMed ID: 10725930
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Input-output organization of the primate motor cortex.
    Strick PL; Preston JB
    Adv Neurol; 1983; 39():321-7. PubMed ID: 6660099
    [No Abstract]   [Full Text] [Related]  

  • 13. Proceedings: 314. Group I activated neurons of 3a area and voluntary forearm movement in the monkey.
    Yumiya H; Kubota K; Asanuma H
    Nihon Seirigaku Zasshi; 1973; 35(8):514-5. PubMed ID: 4209214
    [No Abstract]   [Full Text] [Related]  

  • 14. Neuroscience. Neurons in action.
    König P; Verschure PF
    Science; 2002 Jun; 296(5574):1817-8. PubMed ID: 12052943
    [No Abstract]   [Full Text] [Related]  

  • 15. [Statistical analysis of the functional features of cat motor cortex neurons].
    Sidorov BM; Shul'govskiĭ VV; Kotliar BI
    Neirofiziologiia; 1979; 11(3):201-7. PubMed ID: 460491
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Muscular tone and movement: their cerebral control in primates.
    Mettler FA
    Neurosci Res (N Y); 1968; 1(0):175-250. PubMed ID: 4276766
    [No Abstract]   [Full Text] [Related]  

  • 17. Proceedings: Natural afferent input to movement-related neurones in monkey pre-central cortex.
    Lemon RN; Porter R
    J Physiol; 1976 Jun; 258(1):18P-19P. PubMed ID: 820856
    [No Abstract]   [Full Text] [Related]  

  • 18. An intracortical microstimulation study of output organization in precentral cortex of awake primates.
    Kwan HC; Mackay WA; Murphy JT; Wong YC
    J Physiol (Paris); 1978; 74(3):231-3. PubMed ID: 102772
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Neuronal correlates of the motor function of the cerebral motor cortex].
    Shul'govskiĭ VV; Sidorov BM
    Nauchnye Doki Vyss Shkoly Biol Nauki; 1983; (1):5-14. PubMed ID: 6404310
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison of activity of individual pyramidal tract neurons during balancing, locomotion, and scratching.
    Beloozerova IN; Sirota MG; Orlovsky GN; Deliagina TG
    Behav Brain Res; 2006 Apr; 169(1):98-110. PubMed ID: 16445992
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.