BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

479 related articles for article (PubMed ID: 12177826)

  • 1. The characterization of ion regulation in Amazonian mosquito larvae: evidence of phenotypic plasticity, population-based disparity, and novel mechanisms of ion uptake.
    Patrick ML; Gonzalez RJ; Wood CM; Wilson RW; Bradley TJ; Val AL
    Physiol Biochem Zool; 2002; 75(3):223-36. PubMed ID: 12177826
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ion regulatory patterns of mosquito larvae collected from breeding sites in the Amazon rain forest.
    Patrick ML; Ferreira RL; Gonzalez RJ; Wood CM; Wilson RW; Bradley TJ; Val AL
    Physiol Biochem Zool; 2002; 75(3):215-22. PubMed ID: 12177825
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Diverse strategies for ion regulation in fish collected from the ion-poor, acidic Rio Negro.
    Gonzalez RJ; Wilson RW; Wood CM; Patrick ML; Val AL
    Physiol Biochem Zool; 2002; 75(1):37-47. PubMed ID: 11880976
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Changing salinity induces alterations in hemolymph ion concentrations and Na+ and Cl- transport kinetics of the anal papillae in the larval mosquito, Aedes aegypti.
    Donini A; Gaidhu MP; Strasberg DR; O'donnell MJ
    J Exp Biol; 2007 Mar; 210(Pt 6):983-92. PubMed ID: 17337711
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Protection by natural blackwater against disturbances in ion fluxes caused by low pH exposure in freshwater stingrays endemic to the Rio Negro.
    Wood CM; Matsuo AY; Wilson RW; Gonzalez RJ; Patrick ML; Playle RC; Luis Val A
    Physiol Biochem Zool; 2003; 76(1):12-27. PubMed ID: 12695983
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cationic pathway of pH regulation in larvae of Anopheles gambiae.
    Okech BA; Boudko DY; Linser PJ; Harvey WR
    J Exp Biol; 2008 Mar; 211(Pt 6):957-68. PubMed ID: 18310121
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Strategies for regulation of hemolymph pH in acidic and alkaline water by the larval mosquito Aedes aegypti (L.) (Diptera; Culicidae).
    Clark TM; Vieira MA; Huegel KL; Flury D; Carper M
    J Exp Biol; 2007 Dec; 210(Pt 24):4359-67. PubMed ID: 18055625
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pharmacological characterisation of apical Na+ and Cl- transport mechanisms of the anal papillae in the larval mosquito Aedes aegypti.
    Del Duca O; Nasirian A; Galperin V; Donini A
    J Exp Biol; 2011 Dec; 214(Pt 23):3992-9. PubMed ID: 22071191
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Salt stress alters fluid and ion transport by Malpighian tubules of Drosophila melanogaster: evidence for phenotypic plasticity.
    Naikkhwah W; O'Donnell MJ
    J Exp Biol; 2011 Oct; 214(Pt 20):3443-54. PubMed ID: 21957108
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Analysis of Na+, Cl-, K+, H+ and NH4+ concentration gradients adjacent to the surface of anal papillae of the mosquito Aedes aegypti: application of self-referencing ion-selective microelectrodes.
    Donini A; O'Donnell MJ
    J Exp Biol; 2005 Feb; 208(Pt 4):603-10. PubMed ID: 15695753
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Water chloride provides partial protection during chronic exposure to waterborne silver in rainbow trout (Oncorhynchus mykiss) embryos and larvae.
    Brauner CJ; Wilson J; Kamunde C; Wood CM
    Physiol Biochem Zool; 2003; 76(6):803-15. PubMed ID: 14988795
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The physiological basis for altered Na+ and Cl- movements across the gills of rainbow trout (Oncorhynchus mykiss) in alkaline (pH = 9.5) water.
    Wilkie MP; Laurent P; Wood CM
    Physiol Biochem Zool; 1999; 72(3):360-8. PubMed ID: 10222330
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Is Cl- protection against silver toxicity due to chemical speciation?
    Bielmyer GK; Brix KV; Grosell M
    Aquat Toxicol; 2008 Apr; 87(2):81-7. PubMed ID: 18304659
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fluid and osmolyte recovery in the common pond snail Lymnaea stagnalis following full-body withdrawal.
    Ebanks SC; Grosell M
    J Exp Biol; 2008 Feb; 211(Pt 3):327-36. PubMed ID: 18203987
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sodium and chloride regulation in freshwater and osmoconforming larvae of Culex mosquitoes.
    Patrick ML; Gonzalez RJ; Bradley TJ
    J Exp Biol; 2001 Oct; 204(Pt 19):3345-54. PubMed ID: 11606608
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Secretion of water and ions by malpighian tubules of larval mosquitoes: effects of diuretic factors, second messengers, and salinity.
    Donini A; Patrick ML; Bijelic G; Christensen RJ; Ianowski JP; Rheault MR; O'Donnell MJ
    Physiol Biochem Zool; 2006; 79(3):645-55. PubMed ID: 16691529
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A pharmacological examination of Na+ and Cl- transport in two species of freshwater fish.
    Preest MR; Gonzalez RJ; Wilson RW
    Physiol Biochem Zool; 2005; 78(2):259-72. PubMed ID: 15778945
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of temperature, pH and salinity on the infection of Leptolegnia chapmanii Seymour (Peronosporomycetes) in mosquito larvae.
    Pelizza SA; López Lastra CC; Becnel JJ; Bisaro V; García JJ
    J Invertebr Pathol; 2007 Oct; 96(2):133-7. PubMed ID: 17521667
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sodium-sensitive and -insensitive copper accumulation by isolated intestinal cells of rainbow trout Oncorhynchus mykiss.
    Burke J; Handy RD
    J Exp Biol; 2005 Jan; 208(Pt 2):391-407. PubMed ID: 15634857
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phenotypic plasticity in response to dietary salt stress: Na+ and K+ transport by the gut of Drosophila melanogaster larvae.
    Naikkhwah W; O'Donnell MJ
    J Exp Biol; 2012 Feb; 215(Pt 3):461-70. PubMed ID: 22246255
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 24.