These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 12180862)

  • 1. Topographic map reorganization in cat area 17 after early monocular retinal lesions.
    Matsuura K; Zhang B; Mori T; Smith EL; Kaas JH; Chino Y
    Vis Neurosci; 2002; 19(1):85-96. PubMed ID: 12180862
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Visuotopic reorganization in the primary visual cortex of adult cats following monocular and binocular retinal lesions.
    Schmid LM; Rosa MG; Calford MB; Ambler JS
    Cereb Cortex; 1996; 6(3):388-405. PubMed ID: 8670666
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Laminar differences in plasticity in area 17 following retinal lesions in kittens or adult cats.
    Waleszczyk WJ; Wang C; Young JM; Burke W; Calford MB; Dreher B
    Eur J Neurosci; 2003 Jun; 17(11):2351-68. PubMed ID: 12814367
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cortical plasticity revealed by circumscribed retinal lesions or artificial scotomas.
    Dreher B; Burke W; Calford MB
    Prog Brain Res; 2001; 134():217-46. PubMed ID: 11702546
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Receptive-field properties of deafferentated visual cortical neurons after topographic map reorganization in adult cats.
    Chino YM; Smith EL; Kaas JH; Sasaki Y; Cheng H
    J Neurosci; 1995 Mar; 15(3 Pt 2):2417-33. PubMed ID: 7891177
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Topographic reorganization in area 18 of adult cats following circumscribed monocular retinal lesions in adolescence.
    Young JM; Waleszczyk WJ; Burke W; Calford MB; Dreher B
    J Physiol; 2002 Jun; 541(Pt 2):601-12. PubMed ID: 12042364
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Perceptual filling-in at the scotoma following a monocular retinal lesion in the monkey.
    Murakami I; Komatsu H; Kinoshita M
    Vis Neurosci; 1997; 14(1):89-101. PubMed ID: 9057272
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Responsiveness of cat area 17 after monocular inactivation: limitation of topographic plasticity in adult cortex.
    Rosa MG; Schmid LM; Calford MB
    J Physiol; 1995 Feb; 482 ( Pt 3)(Pt 3):589-608. PubMed ID: 7738850
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Monocular focal retinal lesions induce short-term topographic plasticity in adult cat visual cortex.
    Calford MB; Schmid LM; Rosa MG
    Proc Biol Sci; 1999 Mar; 266(1418):499-507. PubMed ID: 10189714
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Plasticity in adult cat visual cortex (area 17) following circumscribed monocular lesions of all retinal layers.
    Calford MB; Wang C; Taglianetti V; Waleszczyk WJ; Burke W; Dreher B
    J Physiol; 2000 Apr; 524 Pt 2(Pt 2):587-602. PubMed ID: 10767137
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Plasticity Beyond V1: Reinforcement of Motion Perception upon Binocular Central Retinal Lesions in Adulthood.
    Burnat K; Hu TT; Kossut M; Eysel UT; Arckens L
    J Neurosci; 2017 Sep; 37(37):8989-8999. PubMed ID: 28821647
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transfer characteristics of X LGN neurons in cats reared with early discordant binocular vision.
    Cheng H; Chino YM; Smith EL; Hamamoto J; Yoshida K
    J Neurophysiol; 1995 Dec; 74(6):2558-72. PubMed ID: 8747214
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanism of anomalous retinal correspondence: maintenance of binocularity with alteration of receptive-field position in the lateral suprasylvian (LS) visual area of strabismic cats.
    Grant S; Berman NE
    Vis Neurosci; 1991 Sep; 7(3):259-81. PubMed ID: 1751416
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Binocular interactions and disparity coding in area 21a of cat extrastriate visual cortex.
    Wang C; Dreher B
    Exp Brain Res; 1996 Mar; 108(2):257-72. PubMed ID: 8815034
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantification of early stages of cortical reorganization of the topographic map of V1 following retinal lesions in monkeys.
    Botelho EP; Ceriatte C; Soares JG; Gattass R; Fiorani M
    Cereb Cortex; 2014 Jan; 24(1):1-16. PubMed ID: 23010747
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Extracellular GABA concentrations in area 17 of cat visual cortex during topographic map reorganization following binocular central retinal lesioning.
    Massie A; Cnops L; Smolders I; Van Damme K; Vandenbussche E; Vandesande F; Eysel UT; Arckens L
    Brain Res; 2003 Jun; 976(1):100-8. PubMed ID: 12763627
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Receptive-field properties of neurons in binocular and monocular segments of striate cortex in cats raised with binocular lid suture.
    Watkins DW; Wilson JR; Sherman SM
    J Neurophysiol; 1978 Mar; 41(2):322-37. PubMed ID: 650270
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rapid restoration of functional input to the visual cortex of the cat after brief monocular deprivation.
    Blakemore C; Hawken MJ
    J Physiol; 1982 Jun; 327():463-87. PubMed ID: 7120147
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of strabismus and monocular deprivation on the eye preference of neurons in the visual claustrum of the cat.
    Perkel DJ; LeVay S
    J Comp Neurol; 1984 Dec; 230(2):269-77. PubMed ID: 6512021
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dynamics and specificity of cortical map reorganization after retinal lesions.
    Giannikopoulos DV; Eysel UT
    Proc Natl Acad Sci U S A; 2006 Jul; 103(28):10805-10. PubMed ID: 16818873
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.