These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Analysis of the outer membrane proteome of Caulobacter crescentus by two-dimensional electrophoresis and mass spectrometry. Phadke ND; Molloy MP; Steinhoff SA; Ulintz PJ; Andrews PC; Maddock JR Proteomics; 2001 May; 1(5):705-20. PubMed ID: 11678040 [TBL] [Abstract][Full Text] [Related]
3. ExbBD-dependent transport of maltodextrins through the novel MalA protein across the outer membrane of Caulobacter crescentus. Neugebauer H; Herrmann C; Kammer W; Schwarz G; Nordheim A; Braun V J Bacteriol; 2005 Dec; 187(24):8300-11. PubMed ID: 16321934 [TBL] [Abstract][Full Text] [Related]
4. The HfaB and HfaD adhesion proteins of Caulobacter crescentus are localized in the stalk. Cole JL; Hardy GG; Bodenmiller D; Toh E; Hinz A; Brun YV Mol Microbiol; 2003 Sep; 49(6):1671-83. PubMed ID: 12950929 [TBL] [Abstract][Full Text] [Related]
5. OmpW of Caulobacter crescentus Functions as an Outer Membrane Channel for Cations. Benz R; Jones MD; Younas F; Maier E; Modi N; Mentele R; Lottspeich F; Kleinekathöfer U; Smit J PLoS One; 2015; 10(11):e0143557. PubMed ID: 26606672 [TBL] [Abstract][Full Text] [Related]
6. The BAM complex subunit BamE (SmpA) is required for membrane integrity, stalk growth and normal levels of outer membrane {beta}-barrel proteins in Caulobacter crescentus. Ryan KR; Taylor JA; Bowers LM Microbiology (Reading); 2010 Mar; 156(Pt 3):742-756. PubMed ID: 19959579 [TBL] [Abstract][Full Text] [Related]
7. SucA-dependent uptake of sucrose across the outer membrane of Caulobacter crescentus. Modrak SK; Melin ME; Bowers LM J Microbiol; 2018 Sep; 56(9):648-655. PubMed ID: 30054816 [TBL] [Abstract][Full Text] [Related]
8. Profiling the alkaline membrane proteome of Caulobacter crescentus with two-dimensional electrophoresis and mass spectrometry. Molloy MP; Phadke ND; Chen H; Tyldesley R; Garfin DE; Maddock JR; Andrews PC Proteomics; 2002 Jul; 2(7):899-910. PubMed ID: 12124935 [TBL] [Abstract][Full Text] [Related]
9. Sugar-Phosphate Metabolism Regulates Stationary-Phase Entry and Stalk Elongation in Caulobacter crescentus. de Young KD; Stankeviciute G; Klein EA J Bacteriol; 2020 Jan; 202(4):. PubMed ID: 31767777 [TBL] [Abstract][Full Text] [Related]
10. Cytoskeletal Proteins in Caulobacter crescentus: Spatial Orchestrators of Cell Cycle Progression, Development, and Cell Shape. Sundararajan K; Goley ED Subcell Biochem; 2017; 84():103-137. PubMed ID: 28500524 [TBL] [Abstract][Full Text] [Related]
11. Stalk formation of Brevundimonas and how it compares to Caulobacter crescentus. Curtis PD PLoS One; 2017; 12(9):e0184063. PubMed ID: 28886080 [TBL] [Abstract][Full Text] [Related]
12. A specialized MreB-dependent cell wall biosynthetic complex mediates the formation of stalk-specific peptidoglycan in Caulobacter crescentus. Billini M; Biboy J; Kühn J; Vollmer W; Thanbichler M PLoS Genet; 2019 Feb; 15(2):e1007897. PubMed ID: 30707707 [TBL] [Abstract][Full Text] [Related]
13. Caulobacter crescentus Adapts to Phosphate Starvation by Synthesizing Anionic Glycoglycerolipids and a Novel Glycosphingolipid. Stankeviciute G; Guan Z; Goldfine H; Klein EA mBio; 2019 Apr; 10(2):. PubMed ID: 30940701 [No Abstract] [Full Text] [Related]
14. Localization of the outer membrane protein OmpA2 in Caulobacter crescentus depends on the position of the gene in the chromosome. Ginez LD; Osorio A; Poggio S J Bacteriol; 2014 Aug; 196(15):2889-900. PubMed ID: 24891444 [TBL] [Abstract][Full Text] [Related]
15. Physiological role of stalk lengthening in Caulobacter crescentus. Klein EA; Schlimpert S; Hughes V; Brun YV; Thanbichler M; Gitai Z Commun Integr Biol; 2013 Jul; 6(4):e24561. PubMed ID: 23986806 [TBL] [Abstract][Full Text] [Related]
16. Caulobacter crescentus requires RodA and MreB for stalk synthesis and prevention of ectopic pole formation. Wagner JK; Galvani CD; Brun YV J Bacteriol; 2005 Jan; 187(2):544-53. PubMed ID: 15629926 [TBL] [Abstract][Full Text] [Related]
17. NagA-dependent uptake of N-acetyl-glucosamine and N-acetyl-chitin oligosaccharides across the outer membrane of Caulobacter crescentus. Eisenbeis S; Lohmiller S; Valdebenito M; Leicht S; Braun V J Bacteriol; 2008 Aug; 190(15):5230-8. PubMed ID: 18539735 [TBL] [Abstract][Full Text] [Related]