These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
107 related articles for article (PubMed ID: 12180949)
1. A highly selective direct method of detecting sulphate-reducing bacteria in crude oil. Tanaka Y; Sogabe M; Okumura K; Kurane R Lett Appl Microbiol; 2002; 35(3):242-6. PubMed ID: 12180949 [TBL] [Abstract][Full Text] [Related]
2. Sulfate-reducing bacteria in tubes constructed by the marine infaunal polychaete Diopatra cuprea. Matsui GY; Ringelberg DB; Lovell CR Appl Environ Microbiol; 2004 Dec; 70(12):7053-65. PubMed ID: 15574900 [TBL] [Abstract][Full Text] [Related]
3. High overall diversity and dominance of microdiverse relationships in salt marsh sulphate-reducing bacteria. Klepac-Ceraj V; Bahr M; Crump BC; Teske AP; Hobbie JE; Polz MF Environ Microbiol; 2004 Jul; 6(7):686-98. PubMed ID: 15186347 [TBL] [Abstract][Full Text] [Related]
4. [Biodiversity of sulfate-reducing bacteria growing on objects of heating systems]. Purish LM; Asaulenko LG; Abdulina DR; Iutinskaia GA Mikrobiol Z; 2014; 76(3):11-7. PubMed ID: 25007438 [TBL] [Abstract][Full Text] [Related]
5. Quantification of Gram-negative sulphate-reducing bacteria in rice field soil by 16S rRNA gene-targeted real-time PCR. Stubner S J Microbiol Methods; 2004 May; 57(2):219-30. PubMed ID: 15063062 [TBL] [Abstract][Full Text] [Related]
6. Detection of abundant sulphate-reducing bacteria in marine oxic sediment layers by a combined cultivation and molecular approach. Wieringa EB; Overmann J; Cypionka H Environ Microbiol; 2000 Aug; 2(4):417-27. PubMed ID: 11234930 [TBL] [Abstract][Full Text] [Related]
7. Alkane biodegradation and dynamics of phylogenetic subgroups of sulfate-reducing bacteria in an anoxic coastal marine sediment artificially contaminated with oil. Miralles G; Grossi V; Acquaviva M; Duran R; Claude Bertrand J; Cuny P Chemosphere; 2007 Jul; 68(7):1327-34. PubMed ID: 17337033 [TBL] [Abstract][Full Text] [Related]
8. Desulfovibrio tunisiensis sp. nov., a novel weakly halotolerant, sulfate-reducing bacterium isolated from exhaust water of a Tunisian oil refinery. Ben Ali Gam Z; Oueslati R; Abdelkafi S; Casalot L; Tholozan JL; Labat M Int J Syst Evol Microbiol; 2009 May; 59(Pt 5):1059-63. PubMed ID: 19406793 [TBL] [Abstract][Full Text] [Related]
9. Reclassification of the only species of the genus Desulfomonas, Desulfomonas pigra, as Desulfovibrio piger comb. nov. Loubinoux J; Valente FM; Pereira IA; Costa A; Grimont PA; Le Faou AE Int J Syst Evol Microbiol; 2002 Jul; 52(Pt 4):1305-8. PubMed ID: 12148644 [TBL] [Abstract][Full Text] [Related]
10. [Sulfate-Reducing Bacterial Communities in the Water Column of the Gdansk Deep (Baltic Sea)]. Korneeva VA; Pimenov NV; Krek AV; Tourova TP; Bryukhanov AL Mikrobiologiia; 2015; 84(2):250-60. PubMed ID: 26263632 [TBL] [Abstract][Full Text] [Related]
11. Phylogenetic analysis of Syntrophobacter wolinii reveals a relationship with sulfate-reducing bacteria. Harmsen HJ; Wullings B; Akkermans AD; Ludwig W; Stams AJ Arch Microbiol; 1993; 160(3):238-40. PubMed ID: 7692834 [TBL] [Abstract][Full Text] [Related]
12. Diversity and vertical distribution of cultured and uncultured Deltaproteobacteria in an intertidal mud flat of the Wadden Sea. Mussmann M; Ishii K; Rabus R; Amann R Environ Microbiol; 2005 Mar; 7(3):405-18. PubMed ID: 15683401 [TBL] [Abstract][Full Text] [Related]
13. Congruent phylogenies of most common small-subunit rRNA and dissimilatory sulfite reductase gene sequences retrieved from estuarine sediments. Joulian C; Ramsing NB; Ingvorsen K Appl Environ Microbiol; 2001 Jul; 67(7):3314-8. PubMed ID: 11425760 [TBL] [Abstract][Full Text] [Related]
14. Community structure, cellular rRNA content, and activity of sulfate-reducing bacteria in marine arctic sediments. Ravenschlag K; Sahm K; Knoblauch C; Jørgensen BB; Amann R Appl Environ Microbiol; 2000 Aug; 66(8):3592-602. PubMed ID: 10919825 [TBL] [Abstract][Full Text] [Related]
15. Development of oligonucleotide probes and PCR primers for detecting phylogenetic subgroups of sulfate-reducing bacteria. Daly K; Sharp RJ; McCarthy AJ Microbiology (Reading); 2000 Jul; 146 ( Pt 7)():1693-1705. PubMed ID: 10878133 [TBL] [Abstract][Full Text] [Related]
16. Isolation of Desulfomicrobium orale sp. nov. and Desulfovibrio strain NY682, oral sulfate-reducing bacteria involved in human periodontal disease. Langendijk PS; Kulik EM; Sandmeier H; Meyer J; van der Hoeven JS Int J Syst Evol Microbiol; 2001 May; 51(Pt 3):1035-44. PubMed ID: 11411671 [TBL] [Abstract][Full Text] [Related]
17. Diversity of sulfate-reducing bacteria inhabiting the rhizosphere of Phragmites australis in Lake Velencei (Hungary) revealed by a combined cultivation-based and molecular approach. Vladár P; Rusznyák A; Márialigeti K; Borsodi AK Microb Ecol; 2008 Jul; 56(1):64-75. PubMed ID: 18066486 [TBL] [Abstract][Full Text] [Related]
18. Successional development of sulfate-reducing bacterial populations and their activities in a wastewater biofilm growing under microaerophilic conditions. Ito T; Okabe S; Satoh H; Watanabe Y Appl Environ Microbiol; 2002 Mar; 68(3):1392-402. PubMed ID: 11872492 [TBL] [Abstract][Full Text] [Related]
19. Molecular diversity of bacterial communities from subseafloor rock samples in a deep-water production basin in Brazil. von der Weid I; Korenblum E; Jurelevicius D; Rosado AS; Dino R; Sebastian GV; Seldin L J Microbiol Biotechnol; 2008 Jan; 18(1):5-14. PubMed ID: 18239409 [TBL] [Abstract][Full Text] [Related]
20. Desulfovibrio carbinoliphilus sp. nov., a benzyl alcohol-oxidizing, sulfate-reducing bacterium isolated from a gas condensate-contaminated aquifer. Allen TD; Kraus PF; Lawson PA; Drake GR; Balkwill DL; Tanner RS Int J Syst Evol Microbiol; 2008 Jun; 58(Pt 6):1313-7. PubMed ID: 18523171 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]