These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 12180966)

  • 1. Schemes of flux control in a model of Saccharomyces cerevisiae glycolysis.
    Pritchard L; Kell DB
    Eur J Biochem; 2002 Aug; 269(16):3894-904. PubMed ID: 12180966
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modeling response of glycolysis in S. cerevisiae cells harvested at diauxic shift.
    Albers E; Bakker BM; Gustafsson L
    Mol Biol Rep; 2002; 29(1-2):119-23. PubMed ID: 12241040
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Control of glycolytic dynamics by hexose transport in Saccharomyces cerevisiae.
    Reijenga KA; Snoep JL; Diderich JA; van Verseveld HW; Westerhoff HV; Teusink B
    Biophys J; 2001 Feb; 80(2):626-34. PubMed ID: 11159431
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inhibition of glycolysis by 2-deoxygalactose in Saccharomyces cerevisiae.
    Lagunas R; Moreno E
    Yeast; 1992 Feb; 8(2):107-15. PubMed ID: 1532877
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The importance of ATP as a regulator of glycolytic flux in Saccharomyces cerevisiae.
    Larsson C; Påhlman IL; Gustafsson L
    Yeast; 2000 Jun; 16(9):797-809. PubMed ID: 10861904
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dynamics of glycolytic regulation during adaptation of Saccharomyces cerevisiae to fermentative metabolism.
    van den Brink J; Canelas AB; van Gulik WM; Pronk JT; Heijnen JJ; de Winde JH; Daran-Lapujade P
    Appl Environ Microbiol; 2008 Sep; 74(18):5710-23. PubMed ID: 18641162
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Metabolic response to MMS-mediated DNA damage in Saccharomyces cerevisiae is dependent on the glucose concentration in the medium.
    Kitanovic A; Walther T; Loret MO; Holzwarth J; Kitanovic I; Bonowski F; Van Bui N; Francois JM; Wölfl S
    FEMS Yeast Res; 2009 Jun; 9(4):535-51. PubMed ID: 19341380
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Building a kinetic model of trehalose biosynthesis in Saccharomyces cerevisiae.
    Smallbone K; Malys N; Messiha HL; Wishart JA; Simeonidis E
    Methods Enzymol; 2011; 500():355-70. PubMed ID: 21943906
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Role of hexose transport in control of glycolytic flux in Saccharomyces cerevisiae.
    Elbing K; Larsson C; Bill RM; Albers E; Snoep JL; Boles E; Hohmann S; Gustafsson L
    Appl Environ Microbiol; 2004 Sep; 70(9):5323-30. PubMed ID: 15345416
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Glycolytic flux is conditionally correlated with ATP concentration in Saccharomyces cerevisiae: a chemostat study under carbon- or nitrogen-limiting conditions.
    Larsson C; Nilsson A; Blomberg A; Gustafsson L
    J Bacteriol; 1997 Dec; 179(23):7243-50. PubMed ID: 9393686
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Starting up yeast glycolysis.
    Gonçalves P; Planta RJ
    Trends Microbiol; 1998 Aug; 6(8):314-9. PubMed ID: 9746941
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Strategies to determine the extent of control exerted by glucose transport on glycolytic flux in the yeast Saccharomyces bayanus.
    Diderich JA; Teusink B; Valkier J; Anjos J; Spencer-Martins I; van Dam K; Walsh MC
    Microbiology (Reading); 1999 Dec; 145 ( Pt 12)():3447-3454. PubMed ID: 10627042
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of glucose transport mutants of Saccharomyces cerevisiae during a nutritional upshift reveals a correlation between metabolite levels and glycolytic flux.
    Bosch D; Johansson M; Ferndahl C; Franzén CJ; Larsson C; Gustafsson L
    FEMS Yeast Res; 2008 Feb; 8(1):10-25. PubMed ID: 18042231
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dynamic 13C-tracer study of storage carbohydrate pools in aerobic glucose-limited Saccharomyces cerevisiae confirms a rapid steady-state turnover and fast mobilization during a modest stepup in the glucose uptake rate.
    Aboka FO; Heijnen JJ; van Winden WA
    FEMS Yeast Res; 2009 Mar; 9(2):191-201. PubMed ID: 19220865
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analysis of the dynamics of relaxation type oscillation in glycolysis of yeast extracts.
    Das J; Busse HG
    Biophys J; 1991 Aug; 60(2):369-79. PubMed ID: 1832975
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Combining flux and energy balance analysis to model large-scale biochemical networks.
    Heuett WJ; Qian H
    J Bioinform Comput Biol; 2006 Dec; 4(6):1227-43. PubMed ID: 17245812
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The proteomic response of Saccharomyces cerevisiae in very high glucose conditions with amino acid supplementation.
    Pham TK; Wright PC
    J Proteome Res; 2008 Nov; 7(11):4766-74. PubMed ID: 18808174
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The response of oscillating glycolysis to perturbations in the NADH/NAD system: a comparison between experiments and a computer model.
    Richter O; Betz A; Giersch C
    Biosystems; 1975 Jul; 7(1):137-46. PubMed ID: 168933
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Relationship of glycolytic intermediates, glycolytic enzymes, and ammonia to glycogen metabolism during sporulation in the yeast Saccharomyces cerevisiae.
    Fonzi WA; Shanley M; Opheim DJ
    J Bacteriol; 1979 Jan; 137(1):285-94. PubMed ID: 368017
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of the pH of the incubation medium on glycolysis and respiration in Saccharomyces cerevisiae.
    Peña A; Cinco G; Gómez-Puyou A; Tuena M
    Arch Biochem Biophys; 1972 Dec; 153(2):413-25. PubMed ID: 4350804
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 8.