BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

220 related articles for article (PubMed ID: 12181129)

  • 1. EDHF, but not NO or prostaglandins, is critical to evoke a conducted dilation upon ACh in hamster arterioles.
    Hoepfl B; Rodenwaldt B; Pohl U; De Wit C
    Am J Physiol Heart Circ Physiol; 2002 Sep; 283(3):H996-H1004. PubMed ID: 12181129
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pentobarbital-sensitive EDHF comediates ACh-induced arteriolar dilation in the hamster microcirculation.
    de Wit C; Esser N; Lehr HA; Bolz SS; Pohl U
    Am J Physiol; 1999 May; 276(5):H1527-34. PubMed ID: 10330235
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In eNOS knockout mice skeletal muscle arteriolar dilation to acetylcholine is mediated by EDHF.
    Huang A; Sun D; Smith CJ; Connetta JA; Shesely EG; Koller A; Kaley G
    Am J Physiol Heart Circ Physiol; 2000 Mar; 278(3):H762-8. PubMed ID: 10710344
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Homocellular conduction along endothelium and smooth muscle of arterioles in hamster cheek pouch: unmasking an NO wave.
    Budel S; Bartlett IS; Segal SS
    Circ Res; 2003 Jul; 93(1):61-8. PubMed ID: 12791708
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Prominent role of KCa3.1 in endothelium-derived hyperpolarizing factor-type dilations and conducted responses in the microcirculation in vivo.
    Wölfle SE; Schmidt VJ; Hoyer J; Köhler R; de Wit C
    Cardiovasc Res; 2009 Jun; 82(3):476-83. PubMed ID: 19218287
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Contributions of nitric oxide, EDHF, and EETs to endothelium-dependent relaxation in renal afferent arterioles.
    Wang D; Borrego-Conde LJ; Falck JR; Sharma KK; Wilcox CS; Umans JG
    Kidney Int; 2003 Jun; 63(6):2187-93. PubMed ID: 12753306
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Increases in endothelial Ca(2+) activate K(Ca) channels and elicit EDHF-type arteriolar dilation via gap junctions.
    Ungvari Z; Csiszar A; Koller A
    Am J Physiol Heart Circ Physiol; 2002 May; 282(5):H1760-7. PubMed ID: 11959641
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mediation of EDHF-induced reduction of smooth muscle [Ca(2+)](i) and arteriolar dilation by K(+) channels, 5,6-EET, and gap junctions.
    Ungvari Z; Koller A
    Microcirculation; 2001 Aug; 8(4):265-74. PubMed ID: 11528534
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Endothelium-derived hyperpolarizing factor but not NO reduces smooth muscle Ca2+ during acetylcholine-induced dilation of microvessels.
    Bolz SS; de Wit C; Pohl U
    Br J Pharmacol; 1999 Sep; 128(1):124-34. PubMed ID: 10498843
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electromechanical and pharmacomechanical signalling pathways for conducted vasodilatation along endothelium of hamster feed arteries.
    Domeier TL; Segal SS
    J Physiol; 2007 Feb; 579(Pt 1):175-86. PubMed ID: 17138602
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Contributions of endothelium-derived relaxing factors to control of hindlimb blood flow in the mouse in vivo.
    Fitzgerald SM; Bashari H; Cox JA; Parkington HC; Evans RG
    Am J Physiol Heart Circ Physiol; 2007 Aug; 293(2):H1072-82. PubMed ID: 17468338
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multiple dilator pathways in skeletal muscle contraction-induced arteriolar dilations.
    Murrant CL; Sarelius IH
    Am J Physiol Regul Integr Comp Physiol; 2002 Apr; 282(4):R969-78. PubMed ID: 11893599
    [TBL] [Abstract][Full Text] [Related]  

  • 13. K
    Schemke S; de Wit C
    Pflugers Arch; 2021 Nov; 473(11):1795-1806. PubMed ID: 34386847
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Determinants of renal microvascular response to ACh: afferent and efferent arteriolar actions of EDHF.
    Wang X; Loutzenhiser R
    Am J Physiol Renal Physiol; 2002 Jan; 282(1):F124-32. PubMed ID: 11739120
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role of calcium-activated potassium channels in acetylcholine-induced vasodilation of rat retinal arterioles in vivo.
    Mori A; Suzuki S; Sakamoto K; Nakahara T; Ishii K
    Naunyn Schmiedebergs Arch Pharmacol; 2011 Jan; 383(1):27-34. PubMed ID: 20978884
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hindlimb unweighting alters endothelium-dependent vasodilation and ecNOS expression in soleus arterioles.
    Schrage WG; Woodman CR; Laughlin MH
    J Appl Physiol (1985); 2000 Oct; 89(4):1483-90. PubMed ID: 11007586
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dietary obesity increases NO and inhibits BKCa-mediated, endothelium-dependent dilation in rat cremaster muscle artery: association with caveolins and caveolae.
    Howitt L; Grayson TH; Morris MJ; Sandow SL; Murphy TV
    Am J Physiol Heart Circ Physiol; 2012 Jun; 302(12):H2464-76. PubMed ID: 22492718
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Myoendothelial coupling is not prominent in arterioles within the mouse cremaster microcirculation in vivo.
    Siegl D; Koeppen M; Wölfle SE; Pohl U; de Wit C
    Circ Res; 2005 Oct; 97(8):781-8. PubMed ID: 16166558
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Distinct role of nitric oxide and endothelium-derived hyperpolarizing factor in renal microcirculation. Studies in the isolated perfused hydronephrotic kidney.
    Ozawa Y; Hayashi K; Nagahama T; Fujiwara K; Kanda T; Homma K; Saruta T
    Nephron; 2002 Dec; 92(4):905-13. PubMed ID: 12399638
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Role of EDHF in conduction of vasodilation along hamster cheek pouch arterioles in vivo.
    Welsh DG; Segal SS
    Am J Physiol Heart Circ Physiol; 2000 Jun; 278(6):H1832-9. PubMed ID: 10843879
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.