These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

252 related articles for article (PubMed ID: 12182196)

  • 1. Entropy generation method to quantify thermal comfort.
    Boregowda SC; Tiwari SN; Chaturvedi SK
    Hum Perf Extrem Environ; 2001 Dec; 6(1):40-5. PubMed ID: 12182196
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Model of human/liquid cooling garment interaction for space suit automatic thermal control.
    Nyberg KL; Diller KR; Wissler EH
    J Biomech Eng; 2001 Feb; 123(1):114-20. PubMed ID: 11277296
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Forty years of Fanger's model of thermal comfort: comfort for all?
    van Hoof J
    Indoor Air; 2008 Jun; 18(3):182-201. PubMed ID: 18363685
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Data-driven adaptive GM(1,1) time series prediction model for thermal comfort.
    Li X; Xu C; Wang K; Yang X; Li Y
    Int J Biometeorol; 2023 Aug; 67(8):1335-1344. PubMed ID: 37347280
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thermal sensations and comfort investigations in transient conditions in tropical office.
    Dahlan ND; Gital YY
    Appl Ergon; 2016 May; 54():169-76. PubMed ID: 26851476
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A correlation linking the predicted mean vote and the mean thermal vote based on an investigation on the human thermal comfort in short-haul domestic flights.
    Giaconia C; Orioli A; Di Gangi A
    Appl Ergon; 2015 May; 48():202-13. PubMed ID: 25683547
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The influence of local effects on thermal sensation under non-uniform environmental conditions--gender differences in thermophysiology, thermal comfort and productivity during convective and radiant cooling.
    Schellen L; Loomans MG; de Wit MH; Olesen BW; van Marken Lichtenbelt WD
    Physiol Behav; 2012 Sep; 107(2):252-61. PubMed ID: 22877870
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Heart rate variation and electroencephalograph--the potential physiological factors for thermal comfort study.
    Yao Y; Lian Z; Liu W; Jiang C; Liu Y; Lu H
    Indoor Air; 2009 Apr; 19(2):93-101. PubMed ID: 19348034
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Single-sector thermophysiological human simulator.
    Psikuta A; Richards M; Fiala D
    Physiol Meas; 2008 Feb; 29(2):181-92. PubMed ID: 18256450
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Review on modeling heat transfer and thermoregulatory responses in human body.
    Fu M; Weng W; Chen W; Luo N
    J Therm Biol; 2016 Dec; 62(Pt B):189-200. PubMed ID: 27888933
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modification and verification of the PMV model to improve thermal comfort prediction at low pressure.
    Zhou B; Huang Y; Nie J; Ding L; Sun C; Chen B
    J Therm Biol; 2023 Oct; 117():103722. PubMed ID: 37832334
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Thermal comfort: research and practice.
    van Hoof J; Mazej M; Hensen JL
    Front Biosci (Landmark Ed); 2010 Jan; 15(2):765-88. PubMed ID: 20036845
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Physiological modeling for technical, clinical and research applications.
    Fiala D; Psikuta A; Jendritzky G; Paulke S; Nelson DA; Lichtenbelt WD; Frijns AJ
    Front Biosci (Schol Ed); 2010 Jun; 2(3):939-68. PubMed ID: 20515835
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Human thermal physiological and psychological responses under different heating environments.
    Wang Z; Ning H; Ji Y; Hou J; He Y
    J Therm Biol; 2015 Aug; 52():177-86. PubMed ID: 26267512
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Thermal comfort range of a military cold protection glove: database by thermophysiological simulation.
    Zimmermann C; Uedelhoven WH; Kurz B; Glitz KJ
    Eur J Appl Physiol; 2008 Sep; 104(2):229-36. PubMed ID: 18172670
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Physiological-Signal-Based Thermal Sensation Model for Indoor Environment Thermal Comfort Evaluation.
    Pao SL; Wu SY; Liang JM; Huang IJ; Guo LY; Wu WL; Liu YG; Nian SH
    Int J Environ Res Public Health; 2022 Jun; 19(12):. PubMed ID: 35742537
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Simulating the human body's microclimate using automatic coupling of CFD and an advanced thermoregulation model.
    Voelker C; Alsaad H
    Indoor Air; 2018 May; 28(3):415-425. PubMed ID: 29393990
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Study of Human Thermal Comfort for Cyber-Physical Human Centric System in Smart Homes.
    Fang Y; Lim Y; Ooi SE; Zhou C; Tan Y
    Sensors (Basel); 2020 Jan; 20(2):. PubMed ID: 31936499
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development of outdoor thermal index indicating universal and separate effects on human thermal comfort.
    Nagano K; Horikoshi T
    Int J Biometeorol; 2011 Mar; 55(2):219-27. PubMed ID: 20526886
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Heat Flux Sensing for Machine-Learning-Based Personal Thermal Comfort Modeling.
    Jung W; Jazizadeh F; Diller TE
    Sensors (Basel); 2019 Aug; 19(17):. PubMed ID: 31450666
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.