BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 12182654)

  • 1. Functionalization of the methylene groups of p-tert-butylcalix[4]arene: S-C, N-C, and C-C bond formation.
    Simaan S; Agbaria K; Biali SE
    J Org Chem; 2002 Aug; 67(17):6136-42. PubMed ID: 12182654
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spirodienone route for the stereoselective methylene functionalization of p-tert-butylcalix[4]arene.
    Agbaria K; Biali SE
    J Am Chem Soc; 2001 Dec; 123(50):12495-503. PubMed ID: 11741412
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synthesis of p-tert-butylcalix[4]arene derivatives with trans-alkyl substituents on opposite methylene bridges.
    Simaan S; Biali SE
    J Org Chem; 2003 May; 68(9):3634-9. PubMed ID: 12713372
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Incorporation of three or two distal double bonds at the methylene bridges of the calix[4]arene scaffold.
    Shalev O; Biali SE
    J Org Chem; 2014 Sep; 79(18):8584-91. PubMed ID: 25171092
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Functionalization of the methylene bridges of the calix[6]arene scaffold.
    Kogan K; Columbus I; Biali SE
    J Org Chem; 2008 Sep; 73(18):7327-35. PubMed ID: 18707171
    [TBL] [Abstract][Full Text] [Related]  

  • 6. C-Me Bond Formation at All Methylene Bridges of the Calix[4]arene Scaffold.
    Shalev O; Biali SE
    Org Lett; 2018 Jun; 20(11):3390-3393. PubMed ID: 29790764
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Conformational analysis of p-tert-butylcalix[4]arene derivatives with trans-alkyl substituents on opposite methylene bridges: destabilization of the cone form by axial alkyl substituents.
    Simaan S; Biali SE
    J Org Chem; 2003 Oct; 68(20):7685-92. PubMed ID: 14510543
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Extraannular fluorinated calixarenes: regiospecificity of the deoxofluorination reactions of bis(spirodienol) derivatives.
    Agbaria K; Wöhnert J; Biali SE
    J Org Chem; 2001 Oct; 66(21):7059-66. PubMed ID: 11597230
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synthesis and reactivity of calix[4]arene-supported group 4 imido complexes.
    Dubberley SR; Friedrich A; Willman DA; Mountford P; Radius U
    Chemistry; 2003 Aug; 9(15):3634-54. PubMed ID: 12898691
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Calixradialenes: calixarene derivatives with exocyclic double bonds.
    Poms D; Itzhak N; Kuno L; Biali SE
    J Org Chem; 2014 Jan; 79(2):538-45. PubMed ID: 24364562
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spirodienone derivatives of a spherand-type calixarene.
    Agbaria K; Aleksiuk O; Biali SE; Böhmer V; Frings M; Thondorf I
    J Org Chem; 2001 May; 66(9):2891-9. PubMed ID: 11325250
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synthesis of mono-, di- and tetra-alkyne functionalized calix[4]arenes: reactions of these multipodal ligands with dicobalt octacarbonyl to give complexes which contain up to eight cobalt atoms.
    Chetcuti MJ; Devoille AM; Othman AB; Souane R; Thuéry P; Vicens J
    Dalton Trans; 2009 Apr; (16):2999-3008. PubMed ID: 19352528
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Oxo- and imidovanadium complexes incorporating methylene- and dimethyleneoxa-bridged calix[3]- and -[4]arenes: synthesis, structures and ethylene polymerisation catalysis.
    Redshaw C; Rowan MA; Warford L; Homden DM; Arbaoui A; Elsegood MR; Dale SH; Yamato T; Casas CP; Matsui S; Matsuura S
    Chemistry; 2007; 13(4):1090-107. PubMed ID: 17115460
    [TBL] [Abstract][Full Text] [Related]  

  • 14. p-tert-Butylcalix[4]arene complexes of molybdenum and tungsten: reactivity of the calixarene methylene C-H bond and the facile migration of the metal around the phenolic rim of the calixarene.
    Buccella D; Parkin G
    J Am Chem Soc; 2006 Dec; 128(50):16358-64. PubMed ID: 17165791
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synthesis, structures, and conformational characteristics of calixarene monoanions and dianions.
    Hanna TA; Liu L; Angeles-Boza AM; Kou X; Gutsche CD; Ejsmont K; Watson WH; Zakharov LN; Incarvito CD; Rheingold AL
    J Am Chem Soc; 2003 May; 125(20):6228-38. PubMed ID: 12785855
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synthesis of 2-alkyl- and 2-carboxy-p-tert-butylcalix[4]arenes via the lithiation of tetramethoxy-p-tert-butylcalix[4]arene.
    Scully PA; Hamilton TM; Bennett JL
    Org Lett; 2001 Aug; 3(17):2741-4. PubMed ID: 11506623
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ethyleneglycol tungsten complexes of calix[6 and 8]arenes: synthesis, characterization and ROP of ε-caprolactone.
    Li Y; Zhao KQ; Feng C; Elsegood MR; Prior TJ; Sun X; Redshaw C
    Dalton Trans; 2014 Sep; 43(36):13612-9. PubMed ID: 25096967
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Intramolecular AR--O--AR bond formation in calixarenes.
    Agbaria K; Biali SE
    J Org Chem; 2001 Aug; 66(16):5482-9. PubMed ID: 11485472
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Conformationally restricted calix[8]arenes substituted at all methylene bridges.
    Kogan K; Biali SE
    J Org Chem; 2011 Sep; 76(17):7240-4. PubMed ID: 21827146
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Lithiation/Oxygenation Approach to Calix[6]arenes Selectively Functionalized at a Pair of Opposite Methylene Bridges.
    Shalev O; Biali SE
    Org Lett; 2018 Apr; 20(8):2324-2327. PubMed ID: 29638134
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.