These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
521 related articles for article (PubMed ID: 12182900)
21. Activation of inhibitory pathways suppresses the induction of long-term potentiation in neurons of the rat lateral septal nucleus. Hasuo H; Akasu T Neuroscience; 2001; 105(2):343-52. PubMed ID: 11672602 [TBL] [Abstract][Full Text] [Related]
22. Excitatory actions of synaptically released catecholamines in the rat lateral geniculate nucleus. Govindaiah G; Cox CL Neuroscience; 2006; 137(2):671-83. PubMed ID: 16289833 [TBL] [Abstract][Full Text] [Related]
23. Synaptic excitation in the dorsal nucleus of the lateral lemniscus: whole-cell patch-clamp recordings from rat brain slice. Fu XW; Brezden BL; Kelly JB; Wu SH Neuroscience; 1997 Jun; 78(3):815-27. PubMed ID: 9153660 [TBL] [Abstract][Full Text] [Related]
24. NMDA receptor-dependent long-term synaptic depression in the entorhinal cortex in vitro. Kourrich S; Chapman CA J Neurophysiol; 2003 Apr; 89(4):2112-9. PubMed ID: 12612002 [TBL] [Abstract][Full Text] [Related]
25. The physiological role of pre- and postsynaptic GABA(B) receptors in membrane excitability and synaptic transmission of neurons in the rat's dorsal cortex of the inferior colliculus. Sun H; Wu SH Neuroscience; 2009 Apr; 160(1):198-211. PubMed ID: 19409201 [TBL] [Abstract][Full Text] [Related]
26. Two classes of excitatory synaptic responses in rat thalamic reticular neurons. Deleuze C; Huguenard JR J Neurophysiol; 2016 Sep; 116(3):995-1011. PubMed ID: 27281752 [TBL] [Abstract][Full Text] [Related]
27. Input-selective potentiation and rebalancing of primary sensory cortex afferents by endogenous acetylcholine. Kuo MC; Rasmusson DD; Dringenberg HC Neuroscience; 2009 Sep; 163(1):430-41. PubMed ID: 19531370 [TBL] [Abstract][Full Text] [Related]
28. Pre- and postsynaptic GABA(B) receptors modulate rapid neurotransmission from suprachiasmatic nucleus to parvocellular hypothalamic paraventricular nucleus neurons. Wang D; Cui LN; Renaud LP Neuroscience; 2003; 118(1):49-58. PubMed ID: 12676136 [TBL] [Abstract][Full Text] [Related]
29. Dynorphin exerts both postsynaptic and presynaptic effects in the Globus pallidus of the rat. Ogura M; Kita H J Neurophysiol; 2000 Jun; 83(6):3366-76. PubMed ID: 10848555 [TBL] [Abstract][Full Text] [Related]
30. GABAB receptor modulation of rapid inhibitory and excitatory neurotransmission from subfornical organ and other afferents to median preoptic nucleus neurons. Kolaj M; Bai D; Renaud LP J Neurophysiol; 2004 Jul; 92(1):111-22. PubMed ID: 14973311 [TBL] [Abstract][Full Text] [Related]
31. Group II and group III metabotropic glutamate receptor agonists depress synaptic transmission in the rat spinal cord dorsal horn. Gerber G; Zhong J; Youn D; Randic M Neuroscience; 2000; 100(2):393-406. PubMed ID: 11008177 [TBL] [Abstract][Full Text] [Related]
32. Presynaptic Neuronal Nicotinic Receptors Differentially Shape Select Inputs to Auditory Thalamus and Are Negatively Impacted by Aging. Sottile SY; Hackett TA; Cai R; Ling L; Llano DA; Caspary DM J Neurosci; 2017 Nov; 37(47):11377-11389. PubMed ID: 29061702 [TBL] [Abstract][Full Text] [Related]
33. Cholinergic suppression of excitatory synaptic responses in layer II of the medial entorhinal cortex. Hamam BN; Sinai M; Poirier G; Chapman CA Hippocampus; 2007; 17(2):103-13. PubMed ID: 17146776 [TBL] [Abstract][Full Text] [Related]
34. Commissural and lemniscal synaptic input to the gerbil inferior colliculus. Moore DR; Kotak VC; Sanes DH J Neurophysiol; 1998 Nov; 80(5):2229-36. PubMed ID: 9819238 [TBL] [Abstract][Full Text] [Related]
35. Presynaptic GABA(B) receptors inhibit synaptic inputs to rat subthalamic neurons. Shen KZ; Johnson SW Neuroscience; 2001; 108(3):431-6. PubMed ID: 11738257 [TBL] [Abstract][Full Text] [Related]
36. Suprachiasmatic nucleus communicates with anterior thalamic paraventricular nucleus neurons via rapid glutamatergic and gabaergic neurotransmission: state-dependent response patterns observed in vitro. Zhang L; Kolaj M; Renaud LP Neuroscience; 2006 Sep; 141(4):2059-66. PubMed ID: 16797851 [TBL] [Abstract][Full Text] [Related]
37. Metabotropic glutamate and muscarinic cholinergic receptor-mediated preferential inhibition of N-methyl-D-aspartate component of transmissions in rat ventral tegmental area. Zheng F; Johnson SW Neuroscience; 2003; 116(4):1013-20. PubMed ID: 12617942 [TBL] [Abstract][Full Text] [Related]
38. Metabotropic glutamate receptors modulate glutamatergic and GABAergic synaptic transmission in the central nucleus of the inferior colliculus. Farazifard R; Wu SH Brain Res; 2010 Apr; 1325():28-40. PubMed ID: 20153735 [TBL] [Abstract][Full Text] [Related]
39. Continuous white noise exposure during and after auditory critical period differentially alters bidirectional thalamocortical plasticity in rat auditory cortex in vivo. Speechley WJ; Hogsden JL; Dringenberg HC Eur J Neurosci; 2007 Nov; 26(9):2576-84. PubMed ID: 17970743 [TBL] [Abstract][Full Text] [Related]
40. GABA(B) receptor-mediated effects in human and rat neocortical neurones in vitro. Deisz RA Neuropharmacology; 1999 Nov; 38(11):1755-66. PubMed ID: 10587091 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]