These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
215 related articles for article (PubMed ID: 12183103)
1. Renal organic anion transport system: a mechanism for the basolateral uptake of mercury-thiol conjugates along the pars recta of the proximal tubule. Zalups RK; Barfuss DW Toxicol Appl Pharmacol; 2002 Aug; 182(3):234-43. PubMed ID: 12183103 [TBL] [Abstract][Full Text] [Related]
2. Role of organic anion and amino acid carriers in transport of inorganic mercury in rat renal basolateral membrane vesicles: influence of compensatory renal growth. Lash LH; Hueni SE; Putt DA; Zalups RK Toxicol Sci; 2005 Dec; 88(2):630-44. PubMed ID: 16162843 [TBL] [Abstract][Full Text] [Related]
3. Kinetics of interactions of para-aminohippurate, probenecid, cysteine conjugates and N-acetyl cysteine conjugates with basolateral organic anion transporter in isolated rabbit proximal renal tubules. Dantzler WH; Evans KK; Wright SH J Pharmacol Exp Ther; 1995 Feb; 272(2):663-72. PubMed ID: 7853180 [TBL] [Abstract][Full Text] [Related]
4. Human organic anion transporter 1 mediates cellular uptake of cysteine-S conjugates of inorganic mercury. Zalups RK; Aslamkhan AG; Ahmad S Kidney Int; 2004 Jul; 66(1):251-61. PubMed ID: 15200431 [TBL] [Abstract][Full Text] [Related]
5. Luminal transport of thiol S-conjugates of methylmercury in isolated perfused rabbit renal proximal tubules. Wang Y; Zalups RK; Barfuss DW Toxicol Lett; 2012 Sep; 213(2):203-10. PubMed ID: 22800651 [TBL] [Abstract][Full Text] [Related]
6. Human renal organic anion transporter 1-dependent uptake and toxicity of mercuric-thiol conjugates in Madin-Darby canine kidney cells. Aslamkhan AG; Han YH; Yang XP; Zalups RK; Pritchard JB Mol Pharmacol; 2003 Mar; 63(3):590-6. PubMed ID: 12606766 [TBL] [Abstract][Full Text] [Related]
7. Basolateral uptake of mercuric conjugates of N-acetylcysteine and cysteine in the kidney involves the organic anion transport system. Zalups RK J Toxicol Environ Health A; 1998 Sep; 55(1):13-29. PubMed ID: 9747601 [TBL] [Abstract][Full Text] [Related]
8. Homocysteine and the renal epithelial transport and toxicity of inorganic mercury: role of basolateral transporter organic anion transporter 1. Zalups RK; Ahmad S J Am Soc Nephrol; 2004 Aug; 15(8):2023-31. PubMed ID: 15284288 [TBL] [Abstract][Full Text] [Related]
9. Transport of N-acetylcysteine s-conjugates of methylmercury in Madin-Darby canine kidney cells stably transfected with human isoform of organic anion transporter 1. Zalups RK; Ahmad S J Pharmacol Exp Ther; 2005 Sep; 314(3):1158-68. PubMed ID: 15908511 [TBL] [Abstract][Full Text] [Related]
10. Mechanisms of action of 2,3-dimercaptopropane-1-sulfonate and the transport, disposition, and toxicity of inorganic mercury in isolated perfused segments of rabbit proximal tubules. Zalups RK; Parks LD; Cannon VT; Barfuss DW Mol Pharmacol; 1998 Aug; 54(2):353-63. PubMed ID: 9687577 [TBL] [Abstract][Full Text] [Related]
11. Molecular homology and the luminal transport of Hg2+ in the renal proximal tubule. Cannon VT; Barfuss DW; Zalups RK J Am Soc Nephrol; 2000 Mar; 11(3):394-402. PubMed ID: 10703663 [TBL] [Abstract][Full Text] [Related]
12. Handling of cysteine S-conjugates of methylmercury in MDCK cells expressing human OAT1. Zalups RK; Ahmad S Kidney Int; 2005 Oct; 68(4):1684-99. PubMed ID: 16164645 [TBL] [Abstract][Full Text] [Related]
13. Toxicity and transport of three synthesized mercury-thiol-complexes in isolated rabbit renal proximal tubule suspensions. Wei H; Qiu L; Divine KK; Ashbaugh MD; McIntyre LC; Fernando Q; Gandolfi AJ Drug Chem Toxicol; 1999 May; 22(2):323-41. PubMed ID: 10234470 [TBL] [Abstract][Full Text] [Related]
14. Inhibition of basolateral transport and cellular accumulation of cDDP and N-acetyl- L-cysteine-cDDP by TEA and PAH in the renal proximal tubule. Kolb RJ; Ghazi AM; Barfuss DW Cancer Chemother Pharmacol; 2003 Feb; 51(2):132-8. PubMed ID: 12647014 [TBL] [Abstract][Full Text] [Related]
15. Compensatory Renal Hypertrophy and the Uptake of Cysteine S-Conjugates of Hg2+ in Isolated S2 Proximal Tubular Segments. Bridges CC; Barfuss DW; Joshee L; Zalups RK Toxicol Sci; 2016 Dec; 154(2):278-288. PubMed ID: 27562559 [TBL] [Abstract][Full Text] [Related]
16. Lack of luminal or basolateral uptake and transepithelial transport of mercury in isolated perfused proximal tubules exposed to mercury-metallothionein. Zalups RK; Cherian MG; Barfuss DW J Toxicol Environ Health; 1995 Jan; 44(1):101-13. PubMed ID: 7823324 [TBL] [Abstract][Full Text] [Related]
17. Basolateral uptake of inorganic mercury in the kidney. Zalups RK Toxicol Appl Pharmacol; 1998 Jul; 151(1):192-9. PubMed ID: 9705903 [TBL] [Abstract][Full Text] [Related]
18. Role of the calcium/calmodulin-dependent protein kinase II in the regulation of the renal basolateral PAH and dicarboxylate transporters. Gabriëls G; Krämer C; Stärk U; Greven J Fundam Clin Pharmacol; 1999; 13(1):59-66. PubMed ID: 10027089 [TBL] [Abstract][Full Text] [Related]
19. Action of EGF and PGE2 on basolateral organic anion uptake in rabbit proximal renal tubules and hOAT1 expressed in human kidney epithelial cells. Sauvant C; Hesse D; Holzinger H; Evans KK; Dantzler WH; Gekle M Am J Physiol Renal Physiol; 2004 Apr; 286(4):F774-83. PubMed ID: 14644751 [TBL] [Abstract][Full Text] [Related]
20. The molecular and cellular physiology of basolateral organic anion transport in mammalian renal tubules. Dantzler WH; Wright SH Biochim Biophys Acta; 2003 Dec; 1618(2):185-93. PubMed ID: 14729155 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]