BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

219 related articles for article (PubMed ID: 12183103)

  • 1. Renal organic anion transport system: a mechanism for the basolateral uptake of mercury-thiol conjugates along the pars recta of the proximal tubule.
    Zalups RK; Barfuss DW
    Toxicol Appl Pharmacol; 2002 Aug; 182(3):234-43. PubMed ID: 12183103
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Role of organic anion and amino acid carriers in transport of inorganic mercury in rat renal basolateral membrane vesicles: influence of compensatory renal growth.
    Lash LH; Hueni SE; Putt DA; Zalups RK
    Toxicol Sci; 2005 Dec; 88(2):630-44. PubMed ID: 16162843
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Kinetics of interactions of para-aminohippurate, probenecid, cysteine conjugates and N-acetyl cysteine conjugates with basolateral organic anion transporter in isolated rabbit proximal renal tubules.
    Dantzler WH; Evans KK; Wright SH
    J Pharmacol Exp Ther; 1995 Feb; 272(2):663-72. PubMed ID: 7853180
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Human organic anion transporter 1 mediates cellular uptake of cysteine-S conjugates of inorganic mercury.
    Zalups RK; Aslamkhan AG; Ahmad S
    Kidney Int; 2004 Jul; 66(1):251-61. PubMed ID: 15200431
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Luminal transport of thiol S-conjugates of methylmercury in isolated perfused rabbit renal proximal tubules.
    Wang Y; Zalups RK; Barfuss DW
    Toxicol Lett; 2012 Sep; 213(2):203-10. PubMed ID: 22800651
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Human renal organic anion transporter 1-dependent uptake and toxicity of mercuric-thiol conjugates in Madin-Darby canine kidney cells.
    Aslamkhan AG; Han YH; Yang XP; Zalups RK; Pritchard JB
    Mol Pharmacol; 2003 Mar; 63(3):590-6. PubMed ID: 12606766
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Basolateral uptake of mercuric conjugates of N-acetylcysteine and cysteine in the kidney involves the organic anion transport system.
    Zalups RK
    J Toxicol Environ Health A; 1998 Sep; 55(1):13-29. PubMed ID: 9747601
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Homocysteine and the renal epithelial transport and toxicity of inorganic mercury: role of basolateral transporter organic anion transporter 1.
    Zalups RK; Ahmad S
    J Am Soc Nephrol; 2004 Aug; 15(8):2023-31. PubMed ID: 15284288
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transport of N-acetylcysteine s-conjugates of methylmercury in Madin-Darby canine kidney cells stably transfected with human isoform of organic anion transporter 1.
    Zalups RK; Ahmad S
    J Pharmacol Exp Ther; 2005 Sep; 314(3):1158-68. PubMed ID: 15908511
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanisms of action of 2,3-dimercaptopropane-1-sulfonate and the transport, disposition, and toxicity of inorganic mercury in isolated perfused segments of rabbit proximal tubules.
    Zalups RK; Parks LD; Cannon VT; Barfuss DW
    Mol Pharmacol; 1998 Aug; 54(2):353-63. PubMed ID: 9687577
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular homology and the luminal transport of Hg2+ in the renal proximal tubule.
    Cannon VT; Barfuss DW; Zalups RK
    J Am Soc Nephrol; 2000 Mar; 11(3):394-402. PubMed ID: 10703663
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Handling of cysteine S-conjugates of methylmercury in MDCK cells expressing human OAT1.
    Zalups RK; Ahmad S
    Kidney Int; 2005 Oct; 68(4):1684-99. PubMed ID: 16164645
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Toxicity and transport of three synthesized mercury-thiol-complexes in isolated rabbit renal proximal tubule suspensions.
    Wei H; Qiu L; Divine KK; Ashbaugh MD; McIntyre LC; Fernando Q; Gandolfi AJ
    Drug Chem Toxicol; 1999 May; 22(2):323-41. PubMed ID: 10234470
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inhibition of basolateral transport and cellular accumulation of cDDP and N-acetyl- L-cysteine-cDDP by TEA and PAH in the renal proximal tubule.
    Kolb RJ; Ghazi AM; Barfuss DW
    Cancer Chemother Pharmacol; 2003 Feb; 51(2):132-8. PubMed ID: 12647014
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Compensatory Renal Hypertrophy and the Uptake of Cysteine S-Conjugates of Hg2+ in Isolated S2 Proximal Tubular Segments.
    Bridges CC; Barfuss DW; Joshee L; Zalups RK
    Toxicol Sci; 2016 Dec; 154(2):278-288. PubMed ID: 27562559
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Lack of luminal or basolateral uptake and transepithelial transport of mercury in isolated perfused proximal tubules exposed to mercury-metallothionein.
    Zalups RK; Cherian MG; Barfuss DW
    J Toxicol Environ Health; 1995 Jan; 44(1):101-13. PubMed ID: 7823324
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Basolateral uptake of inorganic mercury in the kidney.
    Zalups RK
    Toxicol Appl Pharmacol; 1998 Jul; 151(1):192-9. PubMed ID: 9705903
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Role of the calcium/calmodulin-dependent protein kinase II in the regulation of the renal basolateral PAH and dicarboxylate transporters.
    Gabriëls G; Krämer C; Stärk U; Greven J
    Fundam Clin Pharmacol; 1999; 13(1):59-66. PubMed ID: 10027089
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Action of EGF and PGE2 on basolateral organic anion uptake in rabbit proximal renal tubules and hOAT1 expressed in human kidney epithelial cells.
    Sauvant C; Hesse D; Holzinger H; Evans KK; Dantzler WH; Gekle M
    Am J Physiol Renal Physiol; 2004 Apr; 286(4):F774-83. PubMed ID: 14644751
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The molecular and cellular physiology of basolateral organic anion transport in mammalian renal tubules.
    Dantzler WH; Wright SH
    Biochim Biophys Acta; 2003 Dec; 1618(2):185-93. PubMed ID: 14729155
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.