BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 12183265)

  • 1. Predicting evolution by in vitro evolution requires determining evolutionary pathways.
    Hall BG
    Antimicrob Agents Chemother; 2002 Sep; 46(9):3035-8. PubMed ID: 12183265
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Predicting evolutionary potential: in vitro evolution accurately reproduces natural evolution of the tem beta-lactamase.
    Barlow M; Hall BG
    Genetics; 2002 Mar; 160(3):823-32. PubMed ID: 11901104
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Initial mutations direct alternative pathways of protein evolution.
    Salverda ML; Dellus E; Gorter FA; Debets AJ; van der Oost J; Hoekstra RF; Tawfik DS; de Visser JA
    PLoS Genet; 2011 Mar; 7(3):e1001321. PubMed ID: 21408208
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Probing the active site of beta-lactamase R-TEM1 by informational suppression.
    Lenfant F; Labia R; Masson JM
    Biochimie; 1990; 72(6-7):495-503. PubMed ID: 2124150
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Predicting the emergence of antibiotic resistance by directed evolution and structural analysis.
    Orencia MC; Yoon JS; Ness JE; Stemmer WP; Stevens RC
    Nat Struct Biol; 2001 Mar; 8(3):238-42. PubMed ID: 11224569
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rapid evolution of a protein in vitro by DNA shuffling.
    Stemmer WP
    Nature; 1994 Aug; 370(6488):389-91. PubMed ID: 8047147
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Substitution of Met-69 by Ala or Gly in TEM-1 beta-lactamase confer an increased susceptibility to clavulanic acid and other inhibitors.
    Madec S; Blin C; Krishnamoorthy R; Picard B; Chaibi el B; Fouchereau-Péron M; Labia R
    FEMS Microbiol Lett; 2002 May; 211(1):13-6. PubMed ID: 12052544
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Construction and characterization of mutants of the TEM-1 beta-lactamase containing amino acid substitutions associated with both extended-spectrum resistance and resistance to beta-lactamase inhibitors.
    Stapleton PD; Shannon KP; French GL
    Antimicrob Agents Chemother; 1999 Aug; 43(8):1881-7. PubMed ID: 10428907
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A secondary drug resistance mutation of TEM-1 beta-lactamase that suppresses misfolding and aggregation.
    Sideraki V; Huang W; Palzkill T; Gilbert HF
    Proc Natl Acad Sci U S A; 2001 Jan; 98(1):283-8. PubMed ID: 11114163
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Systematic mutagenesis of the active site omega loop of TEM-1 beta-lactamase.
    Petrosino JF; Palzkill T
    J Bacteriol; 1996 Apr; 178(7):1821-8. PubMed ID: 8606154
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mutant TEM beta-lactamase producing resistance to ceftazidime, ampicillins, and beta-lactamase inhibitors.
    Vakulenko S; Golemi D
    Antimicrob Agents Chemother; 2002 Mar; 46(3):646-53. PubMed ID: 11850243
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effect of high-frequency random mutagenesis on in vitro protein evolution: a study on TEM-1 beta-lactamase.
    Zaccolo M; Gherardi E
    J Mol Biol; 1999 Jan; 285(2):775-83. PubMed ID: 9878443
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of amino acid substitutions that alter the substrate specificity of TEM-1 beta-lactamase.
    Palzkill T; Botstein D
    J Bacteriol; 1992 Aug; 174(16):5237-43. PubMed ID: 1644749
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Experimental prediction of the natural evolution of antibiotic resistance.
    Barlow M; Hall BG
    Genetics; 2003 Apr; 163(4):1237-41. PubMed ID: 12702671
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evolution of antibiotic resistance: several different amino acid substitutions in an active site loop alter the substrate profile of beta-lactamase.
    Palzkill T; Le QQ; Venkatachalam KV; LaRocco M; Ocera H
    Mol Microbiol; 1994 Apr; 12(2):217-29. PubMed ID: 8057847
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Functional Characterization of CTX-M-14 and CTX-M-15 β-Lactamases by
    Po KHL; Chan EWC; Chen S
    Antimicrob Agents Chemother; 2017 Dec; 61(12):. PubMed ID: 28971870
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phenotypic study of resistance of beta-lactamase-inhibitor-resistant TEM enzymes which differ by naturally occurring variations and by site-directed substitution at Asp276.
    Caniça MM; Caroff N; Barthélémy M; Labia R; Krishnamoorthy R; Paul G; Dupret JM
    Antimicrob Agents Chemother; 1998 Jun; 42(6):1323-8. PubMed ID: 9624468
    [TBL] [Abstract][Full Text] [Related]  

  • 18. RAISE: a simple and novel method of generating random insertion and deletion mutations.
    Fujii R; Kitaoka M; Hayashi K
    Nucleic Acids Res; 2006; 34(4):e30. PubMed ID: 16493137
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multiple global suppressors of protein stability defects facilitate the evolution of extended-spectrum TEM β-lactamases.
    Brown NG; Pennington JM; Huang W; Ayvaz T; Palzkill T
    J Mol Biol; 2010 Dec; 404(5):832-46. PubMed ID: 20955714
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Natural Variants of the KPC-2 Carbapenemase have Evolved Increased Catalytic Efficiency for Ceftazidime Hydrolysis at the Cost of Enzyme Stability.
    Mehta SC; Rice K; Palzkill T
    PLoS Pathog; 2015 Jun; 11(6):e1004949. PubMed ID: 26030609
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.