BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 12183328)

  • 1. An N-terminal histidine regulates Zn(2+) inhibition on the murine GABA(A) receptor beta3 subunit.
    Dunne EL; Hosie AM; Wooltorton JR; Duguid IC; Harvey K; Moss SJ; Harvey RJ; Smart TG
    Br J Pharmacol; 2002 Sep; 137(1):29-38. PubMed ID: 12183328
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification of a Zn2+ binding site on the murine GABAA receptor complex: dependence on the second transmembrane domain of beta subunits.
    Wooltorton JR; McDonald BJ; Moss SJ; Smart TG
    J Physiol; 1997 Dec; 505 ( Pt 3)(Pt 3):633-40. PubMed ID: 9457641
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification of an inhibitory Zn2+ binding site on the human glycine receptor alpha1 subunit.
    Harvey RJ; Thomas P; James CH; Wilderspin A; Smart TG
    J Physiol; 1999 Oct; 520 Pt 1(Pt 1):53-64. PubMed ID: 10517800
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pharmacological and physiological characterization of murine homomeric beta3 GABA(A) receptors.
    Wooltorton JR; Moss SJ; Smart TG
    Eur J Neurosci; 1997 Nov; 9(11):2225-35. PubMed ID: 9464918
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification of a beta subunit TM2 residue mediating proton modulation of GABA type A receptors.
    Wilkins ME; Hosie AM; Smart TG
    J Neurosci; 2002 Jul; 22(13):5328-33. PubMed ID: 12097484
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular basis for modulation of recombinant alpha1beta2gamma2 GABAA receptors by protons.
    Huang RQ; Chen Z; Dillon GH
    J Neurophysiol; 2004 Aug; 92(2):883-94. PubMed ID: 15028749
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mutagenesis and computational docking studies support the existence of a histamine binding site at the extracellular β3+β3- interface of homooligomeric β3 GABAA receptors.
    Hoerbelt P; Ramerstorfer J; Ernst M; Sieghart W; Thomson JL; Hough LB; Fleck MW
    Neuropharmacology; 2016 Sep; 108():252-63. PubMed ID: 27140694
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Redox modulation of GABAA receptors obscured by Zn2+ complexation.
    Wilkins ME; Smart TG
    Neuropharmacology; 2002 Nov; 43(6):938-44. PubMed ID: 12423663
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An N-terminal histidine is the primary determinant of alpha subunit-dependent Cu2+ sensitivity of alphabeta3gamma2L GABA(A) receptors.
    Kim H; Macdonald RL
    Mol Pharmacol; 2003 Nov; 64(5):1145-52. PubMed ID: 14573764
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A single histidine residue is essential for zinc inhibition of GABA rho 1 receptors.
    Wang TL; Hackam A; Guggino WB; Cutting GR
    J Neurosci; 1995 Nov; 15(11):7684-91. PubMed ID: 7472519
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Proton sensitivity of the GABA(A) receptor is associated with the receptor subunit composition.
    Krishek BJ; Amato A; Connolly CN; Moss SJ; Smart TG
    J Physiol; 1996 Apr; 492 ( Pt 2)(Pt 2):431-43. PubMed ID: 9019540
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Proton modulation of recombinant GABA(A) receptors: influence of GABA concentration and the beta subunit TM2-TM3 domain.
    Wilkins ME; Hosie AM; Smart TG
    J Physiol; 2005 Sep; 567(Pt 2):365-77. PubMed ID: 15946973
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of an amino acid defining the distinct properties of murine beta1 and beta3 subunit-containing GABA(A) receptors.
    Cestari IN; Min KT; Kulli JC; Yang J
    J Neurochem; 2000 Feb; 74(2):827-38. PubMed ID: 10646536
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The role of histidine residues in modulation of the rat P2X(2) purinoceptor by zinc and pH.
    Clyne JD; LaPointe LD; Hume RI
    J Physiol; 2002 Mar; 539(Pt 2):347-59. PubMed ID: 11882669
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A histidine residue in the extracellular N-terminal domain of the GABA(A) receptor alpha5 subunit regulates sensitivity to inhibition by zinc.
    Fisher JL
    Neuropharmacology; 2002 Jun; 42(7):922-8. PubMed ID: 12069902
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Low nanomolar GABA effects at extrasynaptic α4β1/β3δ GABA(A) receptor subtypes indicate a different binding mode for GABA at these receptors.
    Karim N; Wellendorph P; Absalom N; Bang LH; Jensen ML; Hansen MM; Lee HJ; Johnston GA; Hanrahan JR; Chebib M
    Biochem Pharmacol; 2012 Aug; 84(4):549-57. PubMed ID: 22658986
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Topiramate modulation of β(1)- and β(3)-homomeric GABA(A) receptors.
    Simeone TA; Wilcox KS; White HS
    Pharmacol Res; 2011 Jul; 64(1):44-52. PubMed ID: 21421049
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Two gamma2L subunit domains confer low Zn2+ sensitivity to ternary GABA(A) receptors.
    Nagaya N; Macdonald RL
    J Physiol; 2001 Apr; 532(Pt 1):17-30. PubMed ID: 11283222
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effect of a transmembrane amino acid on etomidate sensitivity of an invertebrate GABA receptor.
    McGurk KA; Pistis M; Belelli D; Hope AG; Lambert JJ
    Br J Pharmacol; 1998 May; 124(1):13-20. PubMed ID: 9630337
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Engineered Zn(2+) switches in the gamma-aminobutyric acid (GABA) transporter-1. Differential effects on GABA uptake and currents.
    MacAulay N; Bendahan A; Loland CJ; Zeuthen T; Kanner BI; Gether U
    J Biol Chem; 2001 Nov; 276(44):40476-85. PubMed ID: 11527967
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.