These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
223 related articles for article (PubMed ID: 12183454)
1. ClC-3 is a fundamental molecular component of volume-sensitive outwardly rectifying Cl- channels and volume regulation in HeLa cells and Xenopus laevis oocytes. Hermoso M; Satterwhite CM; Andrade YN; Hidalgo J; Wilson SM; Horowitz B; Hume JR J Biol Chem; 2002 Oct; 277(42):40066-74. PubMed ID: 12183454 [TBL] [Abstract][Full Text] [Related]
2. Functional inhibition of native volume-sensitive outwardly rectifying anion channels in muscle cells and Xenopus oocytes by anti-ClC-3 antibody. Duan D; Zhong J; Hermoso M; Satterwhite CM; Rossow CF; Hatton WJ; Yamboliev I; Horowitz B; Hume JR J Physiol; 2001 Mar; 531(Pt 2):437-44. PubMed ID: 11230516 [TBL] [Abstract][Full Text] [Related]
3. Functional effects of novel anti-ClC-3 antibodies on native volume-sensitive osmolyte and anion channels in cardiac and smooth muscle cells. Wang GX; Hatton WJ; Wang GL; Zhong J; Yamboliev I; Duan D; Hume JR Am J Physiol Heart Circ Physiol; 2003 Oct; 285(4):H1453-63. PubMed ID: 12816749 [TBL] [Abstract][Full Text] [Related]
4. Altered properties of volume-sensitive osmolyte and anion channels (VSOACs) and membrane protein expression in cardiac and smooth muscle myocytes from Clcn3-/- mice. Yamamoto-Mizuma S; Wang GX; Liu LL; Schegg K; Hatton WJ; Duan D; Horowitz TL; Lamb FS; Hume JR J Physiol; 2004 Jun; 557(Pt 2):439-56. PubMed ID: 15020697 [TBL] [Abstract][Full Text] [Related]
5. Characterization of an outward rectifying chloride current of Xenopus tropicalis oocytes. Ochoa-de la Paz LD; Espino-Saldaña AE; Arellano-Ostoa R; Reyes JP; Miledi R; Martinez-Torres A Biochim Biophys Acta; 2013 Aug; 1828(8):1743-53. PubMed ID: 23524227 [TBL] [Abstract][Full Text] [Related]
6. Swelling-induced taurine release without chloride channel activity in Xenopus laevis oocytes expressing anion channels and transporters. Stegen C; Matskevich I; Wagner CA; Paulmichl M; Lang F; Bröer S Biochim Biophys Acta; 2000 Jul; 1467(1):91-100. PubMed ID: 10930512 [TBL] [Abstract][Full Text] [Related]
7. Heteromultimeric CLC chloride channels with novel properties. Lorenz C; Pusch M; Jentsch TJ Proc Natl Acad Sci U S A; 1996 Nov; 93(23):13362-6. PubMed ID: 8917596 [TBL] [Abstract][Full Text] [Related]
8. Regulation of intracellular Cl- concentration through volume-regulated ClC-3 chloride channels in A10 vascular smooth muscle cells. Zhou JG; Ren JL; Qiu QY; He H; Guan YY J Biol Chem; 2005 Feb; 280(8):7301-8. PubMed ID: 15596438 [TBL] [Abstract][Full Text] [Related]
9. Biophysical and pharmacological characterization of hypotonically activated chloride currents in cortical astrocytes. Parkerson KA; Sontheimer H Glia; 2004 May; 46(4):419-36. PubMed ID: 15095372 [TBL] [Abstract][Full Text] [Related]
10. Fundamental role of ClC-3 in volume-sensitive Cl- channel function and cell volume regulation in AGS cells. Jin NG; Kim JK; Yang DK; Cho SJ; Kim JM; Koh EJ; Jung HC; So I; Kim KW Am J Physiol Gastrointest Liver Physiol; 2003 Nov; 285(5):G938-48. PubMed ID: 12842831 [TBL] [Abstract][Full Text] [Related]
11. Characterization of the putative chloride channel xClC-5 expressed in Xenopus laevis oocytes and comparison with endogenous chloride currents. Schmieder S; Lindenthal S; Banderali U; Ehrenfeld J J Physiol; 1998 Sep; 511 ( Pt 2)(Pt 2):379-93. PubMed ID: 9706017 [TBL] [Abstract][Full Text] [Related]
12. CLC-3 chloride channels in the pulmonary vasculature. Hume JR; Wang GX; Yamazaki J; Ng LC; Duan D Adv Exp Med Biol; 2010; 661():237-47. PubMed ID: 20204734 [TBL] [Abstract][Full Text] [Related]
13. Comparison of amphibian and human ClC-5: similarity of functional properties and inhibition by external pH. Mo L; Hellmich HL; Fong P; Wood T; Embesi J; Wills NK J Membr Biol; 1999 Apr; 168(3):253-64. PubMed ID: 10191359 [TBL] [Abstract][Full Text] [Related]
14. Cloning and functional expression of a ClC Cl- channel from the renal cell line A6. Lindenthal S; Schmieder S; Ehrenfeld J; Wills NK Am J Physiol; 1997 Oct; 273(4):C1176-85. PubMed ID: 9357761 [TBL] [Abstract][Full Text] [Related]
15. Expression and regulation of ClC-5 chloride channels: effects of antisense and oxidants. Weng TX; Mo L; Hellmich HL; Yu AS; Wood T; Wills NK Am J Physiol Cell Physiol; 2001 Jun; 280(6):C1511-20. PubMed ID: 11350746 [TBL] [Abstract][Full Text] [Related]
16. Activation by acidic pH of CLC-7 expressed in oocytes from Xenopus laevis. Diewald L; Rupp J; Dreger M; Hucho F; Gillen C; Nawrath H Biochem Biophys Res Commun; 2002 Feb; 291(2):421-4. PubMed ID: 11846422 [TBL] [Abstract][Full Text] [Related]
18. Relationship between intracellular pH and chloride in Xenopus oocytes expressing the chloride channel ClC-0. Cooper GJ; Fong P Am J Physiol Cell Physiol; 2003 Feb; 284(2):C331-8. PubMed ID: 12388074 [TBL] [Abstract][Full Text] [Related]
19. Hypotonic activation of volume-sensitive outwardly rectifying chloride channels in cultured PASMCs is modulated by SGK. Wang GX; McCrudden C; Dai YP; Horowitz B; Hume JR; Yamboliev IA Am J Physiol Heart Circ Physiol; 2004 Aug; 287(2):H533-44. PubMed ID: 15277197 [TBL] [Abstract][Full Text] [Related]
20. Chloride channels regulate HIT cell volume but cannot fully account for swelling-induced insulin secretion. Kinard TA; Goforth PB; Tao Q; Abood ME; Teague J; Satin LS Diabetes; 2001 May; 50(5):992-1003. PubMed ID: 11334443 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]