These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 12183511)

  • 41. Postischemic angiogenic factor expression in stroke-prone rats.
    Wang MM; Klaus JA; Joh HD; Traystman RJ; Hurn PD
    Exp Neurol; 2002 Feb; 173(2):283-8. PubMed ID: 11822892
    [TBL] [Abstract][Full Text] [Related]  

  • 42. The Tie2 receptor antagonist angiopoietin 2 facilitates vascular inflammation in systemic lupus erythematosus.
    Kümpers P; David S; Haubitz M; Hellpap J; Horn R; Bröcker V; Schiffer M; Haller H; Witte T
    Ann Rheum Dis; 2009 Oct; 68(10):1638-43. PubMed ID: 18930996
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Role of angiopoietin-1 in experimental and human pulmonary arterial hypertension.
    Kugathasan L; Dutly AE; Zhao YD; Deng Y; Robb MJ; Keshavjee S; Stewart DJ
    Chest; 2005 Dec; 128(6 Suppl):633S-642S. PubMed ID: 16373885
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Tie2 receptor tyrosine kinase, a major mediator of tumor necrosis factor alpha-induced angiogenesis in rheumatoid arthritis.
    DeBusk LM; Chen Y; Nishishita T; Chen J; Thomas JW; Lin PC
    Arthritis Rheum; 2003 Sep; 48(9):2461-71. PubMed ID: 13130465
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Structural and functional adaptation to hypoxia in the rat brain.
    LaManna JC; Chavez JC; Pichiule P
    J Exp Biol; 2004 Aug; 207(Pt 18):3163-9. PubMed ID: 15299038
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Hypoxia reduces endothelial Ang1-induced Tie2 activity in a Tie1-dependent manner.
    Yun JH; Lee HM; Lee EH; Park JW; Cho CH
    Biochem Biophys Res Commun; 2013 Jul; 436(4):691-7. PubMed ID: 23770419
    [TBL] [Abstract][Full Text] [Related]  

  • 47. A pericyte-derived angiopoietin-1 multimeric complex induces occludin gene expression in brain capillary endothelial cells through Tie-2 activation in vitro.
    Hori S; Ohtsuki S; Hosoya K; Nakashima E; Terasaki T
    J Neurochem; 2004 Apr; 89(2):503-13. PubMed ID: 15056293
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Selective expression of angiopoietin 1 and 2 in mesenchymal cells surrounding veins and arteries of the avian embryo.
    Moyon D; Pardanaud L; Yuan L; Bréant C; Eichmann A
    Mech Dev; 2001 Aug; 106(1-2):133-6. PubMed ID: 11472842
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Inhibition of rat corneal angiogenesis by a nuclease-resistant RNA aptamer specific for angiopoietin-2.
    White RR; Shan S; Rusconi CP; Shetty G; Dewhirst MW; Kontos CD; Sullenger BA
    Proc Natl Acad Sci U S A; 2003 Apr; 100(9):5028-33. PubMed ID: 12692304
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Time-course and reversibility of the hypoxia-induced alterations in cerebral vascularity and cerebral capillary glucose transporter density.
    Harik N; Harik SI; Kuo NT; Sakai K; Przybylski RJ; LaManna JC
    Brain Res; 1996 Oct; 737(1-2):335-8. PubMed ID: 8930387
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Angiopoietin and Tie signaling pathways in vascular development.
    Loughna S; Sato TN
    Matrix Biol; 2001 Sep; 20(5-6):319-25. PubMed ID: 11566266
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Microvascular sprouting, extension, and creation of new capillary connections with adaptation of the neighboring astrocytes in adult mouse cortex under chronic hypoxia.
    Masamoto K; Takuwa H; Seki C; Taniguchi J; Itoh Y; Tomita Y; Toriumi H; Unekawa M; Kawaguchi H; Ito H; Suzuki N; Kanno I
    J Cereb Blood Flow Metab; 2014 Feb; 34(2):325-31. PubMed ID: 24252848
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Brain adaptation to chronic hypobaric hypoxia in rats.
    LaManna JC; Vendel LM; Farrell RM
    J Appl Physiol (1985); 1992 Jun; 72(6):2238-43. PubMed ID: 1629078
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Cardiovascular Adaptation in Response to Chronic Hypoxia in Awake Rats.
    Hamashima S; Shibata M
    Adv Exp Med Biol; 2016; 876():241-246. PubMed ID: 26782218
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Cerebral Angioplasticity: The Anatomical Contribution to Ensuring Appropriate Oxygen Transport to Brain.
    LaManna JC
    Adv Exp Med Biol; 2018; 1072():3-6. PubMed ID: 30178315
    [TBL] [Abstract][Full Text] [Related]  

  • 56. [LONG-TERM EFFECTS OF EXPOSURE TO PERINATAL HYPOXIA ON MICROVASCULAR ENDOTHELIUM OF NEOCORTEX IN RATS].
    Otellin VA; Khozhai LI; Sishko TT; Tyurenkov IN
    Zh Evol Biokhim Fiziol; 2017 Jan; 53(1):49-54. PubMed ID: 30695442
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Increased brain capillaries in chronic hypoxia.
    Boero JA; Ascher J; Arregui A; Rovainen C; Woolsey TA
    J Appl Physiol (1985); 1999 Apr; 86(4):1211-9. PubMed ID: 10194205
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Hypoxia-induced brain angiogenesis in the adult rat.
    Harik SI; Hritz MA; LaManna JC
    J Physiol; 1995 Jun; 485 ( Pt 2)(Pt 2):525-30. PubMed ID: 7545234
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Vascular endothelium in tissue remodeling: implications for heart failure.
    Dallabrida SM; Rupnick MA
    Cold Spring Harb Symp Quant Biol; 2002; 67():417-27. PubMed ID: 12858567
    [No Abstract]   [Full Text] [Related]  

  • 60. 3D analysis of intracortical microvasculature during chronic hypoxia in mouse brains.
    Yoshihara K; Takuwa H; Kanno I; Okawa S; Yamada Y; Masamoto K
    Adv Exp Med Biol; 2013; 765():357-363. PubMed ID: 22879056
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.