These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 12184383)

  • 1. Variable selection for QSAR by artificial ant colony systems.
    Izrailev S; Agrafiotis DK
    SAR QSAR Environ Res; 2002; 13(3-4):417-23. PubMed ID: 12184383
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modeling shortest path selection of the ant Linepithema humile using psychophysical theory and realistic parameter values.
    von Thienen W; Metzler D; Witte V
    J Theor Biol; 2015 May; 372():168-78. PubMed ID: 25769943
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modeling the dynamics of ant colony optimization.
    Merkle D; Middendorf M
    Evol Comput; 2002; 10(3):235-62. PubMed ID: 12227995
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Path efficiency of ant foraging trails in an artificial network.
    Vittori K; Talbot G; Gautrais J; Fourcassié V; Araújo AF; Theraulaz G
    J Theor Biol; 2006 Apr; 239(4):507-15. PubMed ID: 16199059
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An efficient variable selection method based on the use of external memory in ant colony optimization. Application to QSAR/QSPR studies.
    Shamsipur M; Zare-Shahabadi V; Hemmateenejad B; Akhond M
    Anal Chim Acta; 2009 Jul; 646(1-2):39-46. PubMed ID: 19523554
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optimality of collective choices: a stochastic approach.
    Nicolis SC; Detrain C; Demolin D; Deneubourg JL
    Bull Math Biol; 2003 Sep; 65(5):795-808. PubMed ID: 12909251
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Artificial pheromone for path selection by a foraging swarm of robots.
    Campo A; Gutiérrez A; Nouyan S; Pinciroli C; Longchamp V; Garnier S; Dorigo M
    Biol Cybern; 2010 Nov; 103(5):339-52. PubMed ID: 20644952
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Automated selection of appropriate pheromone representations in ant colony optimization.
    Montgomery J; Randall M; Hendtlass T
    Artif Life; 2005; 11(3):269-91. PubMed ID: 16053571
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An agent-based model to investigate the roles of attractive and repellent pheromones in ant decision making during foraging.
    Robinson EJ; Ratnieks FL; Holcombe M
    J Theor Biol; 2008 Nov; 255(2):250-8. PubMed ID: 18778716
    [TBL] [Abstract][Full Text] [Related]  

  • 10. SamACO: variable sampling ant colony optimization algorithm for continuous optimization.
    Hu XM; Zhang J; Chung HS; Li Y; Liu O
    IEEE Trans Syst Man Cybern B Cybern; 2010 Dec; 40(6):1555-66. PubMed ID: 20371409
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modified ant colony optimization algorithm for variable selection in QSAR modeling: QSAR studies of cyclooxygenase inhibitors.
    Shen Q; Jiang JH; Tao JC; Shen GL; Yu RQ
    J Chem Inf Model; 2005; 45(4):1024-9. PubMed ID: 16045297
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A new and efficient variable selection algorithm based on ant colony optimization. Applications to near infrared spectroscopy/partial least-squares analysis.
    Allegrini F; Olivieri AC
    Anal Chim Acta; 2011 Aug; 699(1):18-25. PubMed ID: 21704753
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The role of multiple pheromones in food recruitment by ants.
    Dussutour A; Nicolis SC; Shephard G; Beekman M; Sumpter DJ
    J Exp Biol; 2009 Aug; 212(Pt 15):2337-48. PubMed ID: 19617426
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Studying the explanatory capacity of artificial neural networks for understanding environmental chemical quantitative structure-activity relationship models.
    Yang L; Wang P; Jiang Y; Chen J
    J Chem Inf Model; 2005; 45(6):1804-11. PubMed ID: 16309287
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A self-adaptive genetic algorithm-artificial neural network algorithm with leave-one-out cross validation for descriptor selection in QSAR study.
    Wu J; Mei J; Wen S; Liao S; Chen J; Shen Y
    J Comput Chem; 2010 Jul; 31(10):1956-68. PubMed ID: 20512843
    [TBL] [Abstract][Full Text] [Related]  

  • 16. All-Optical Implementation of the Ant Colony Optimization Algorithm.
    Hu W; Wu K; Shum PP; Zheludev NI; Soci C
    Sci Rep; 2016 May; 6():26283. PubMed ID: 27222098
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ant-based computing.
    Michael L
    Artif Life; 2009; 15(3):337-49. PubMed ID: 19239348
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An artificial ant colonies approach to medical image segmentation.
    Huang P; Cao H; Luo S
    Comput Methods Programs Biomed; 2008 Dec; 92(3):267-73. PubMed ID: 18676053
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Partial least squares modeling and genetic algorithm optimization in quantitative structure-activity relationships.
    Hasegawa K; Funatsu K
    SAR QSAR Environ Res; 2000; 11(3-4):189-209. PubMed ID: 10969871
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Feature selection and linear/nonlinear regression methods for the accurate prediction of glycogen synthase kinase-3beta inhibitory activities.
    Goodarzi M; Freitas MP; Jensen R
    J Chem Inf Model; 2009 Apr; 49(4):824-32. PubMed ID: 19338295
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.