These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 12184391)

  • 1. Does the odor from sponges of the genus Ircinia protect them from fish predators?
    Pawlik JR; McFall G; Zea S
    J Chem Ecol; 2002 Jun; 28(6):1103-15. PubMed ID: 12184391
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sponge symbioses between Xestospongia deweerdtae and Plakortis spp. are not motivated by shared chemical defense against predators.
    Marty MJ; Vicente J; Oyler BL; Place A; Hill RT
    PLoS One; 2017; 12(4):e0174816. PubMed ID: 28419173
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Exudation of low molecular weight compounds (thiobismethane, methyl isocyanide, and methyl isothiocyanate) as a possible chemical defense mechanism in the marine sponge Ircinia felix.
    Duque C; Bonilla A; Bautista E; Zea S
    Biochem Syst Ecol; 2001 May; 29(5):459-467. PubMed ID: 11274769
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chemical defense of Mediterranean sponges Aplysina cavernicola and Aplysina aerophoba.
    Thoms C; Wolff M; Padmakumar K; Ebel R; Proksch P
    Z Naturforsch C J Biosci; 2004; 59(1-2):113-22. PubMed ID: 15018063
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biogeography of sponge chemical ecology: comparisons of tropical and temperate defenses.
    Becerro MA; Thacker RW; Turon X; Uriz MJ; Paul VJ
    Oecologia; 2003 Mar; 135(1):91-101. PubMed ID: 12647108
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparative study of the fatty acid composition of sponges of the genus Ircinia. Identification of the new 23-methyl-5,9-tetracosadienoic acid.
    Carballeira NM; Shalabi F; Cruz C; Rodriguez J; Rodriguez E
    Comp Biochem Physiol B; 1991; 100(3):489-92. PubMed ID: 1814678
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Amphitoxin, a new high molecular weight antifeedant pyridinium salt from the Caribbean sponge Amphimedon compressa.
    Albrizio S; Ciminiello P; Fattorusso E; Magno S; Pawlik JR
    J Nat Prod; 1995 May; 58(5):647-52. PubMed ID: 7623044
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chemical defense and antifouling activity of three Mediterranean sponges of the genus Ircinia.
    Tsoukatou M; Hellio C; Vagias C; Harvala C; Roussis V
    Z Naturforsch C J Biosci; 2002; 57(1-2):161-71. PubMed ID: 11926529
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A fish-feeding laboratory bioassay to assess the antipredatory activity of secondary metabolites from the tissues of marine organisms.
    Marty MJ; Pawlik JR
    J Vis Exp; 2015 Jan; (95):52429. PubMed ID: 25650625
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Trade-offs in defensive metabolite production but not ecological function in healthy and diseased sponges.
    Gochfeld DJ; Kamel HN; Olson JB; Thacker RW
    J Chem Ecol; 2012 May; 38(5):451-62. PubMed ID: 22476960
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chemical defenses of the sacoglossan mollusk Elysia rufescens and its host Alga bryopsis sp.
    Becerro MA; Goetz G; Paul VJ; Scheuer PJ
    J Chem Ecol; 2001 Nov; 27(11):2287-99. PubMed ID: 11817082
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Latitudinal variation in spongivorous fishes and the effectiveness of sponge chemical defenses.
    Ruzicka R; Gleason DF
    Oecologia; 2008 Jan; 154(4):785-94. PubMed ID: 17960425
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Does the skeleton of a sponge provide a defense against predatory reef fish?
    Chanas B; Pawlik JR
    Oecologia; 1996 Jul; 107(2):225-231. PubMed ID: 28307308
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Novel fatty acid esters of (7E, 12E, 18R, 20Z)-variabilin from the marine sponge Ircinia felix.
    Martínez A; Duque C; Fujimoto Y
    Lipids; 1997 May; 32(5):565-9. PubMed ID: 9168464
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multiple defensive roles for triterpene glycosides from two Caribbean sponges.
    Kubanek J; Whalen KE; Engel S; Kelly SR; Henkel TP; Fenical W; Pawlik JR
    Oecologia; 2002 Mar; 131(1):125-136. PubMed ID: 28547502
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spatial variability in secondary metabolites of the indo-pacific sponge Stylissa massa.
    Rohde S; Gochfeld DJ; Ankisetty S; Avula B; Schupp PJ; Slattery M
    J Chem Ecol; 2012 May; 38(5):463-75. PubMed ID: 22569832
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Amaroxocanes A and B: sulfated dimeric sterols defend the Caribbean coral reef sponge Phorbas amaranthus from fish predators.
    Morinaka BI; Pawlik JR; Molinski TF
    J Nat Prod; 2009 Feb; 72(2):259-64. PubMed ID: 19143510
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Symbiotic archaea in marine sponges show stability and host specificity in community structure and ammonia oxidation functionality.
    Zhang F; Pita L; Erwin PM; Abaid S; López-Legentil S; Hill RT
    FEMS Microbiol Ecol; 2014 Dec; 90(3):699-707. PubMed ID: 25227989
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Prevalence and Mechanisms of Dynamic Chemical Defenses in Tropical Sponges.
    Rohde S; Nietzer S; Schupp PJ
    PLoS One; 2015; 10(7):e0132236. PubMed ID: 26154741
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.