These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
120 related articles for article (PubMed ID: 12184398)
1. Host-recognizing kairomones for parasitic wasp, Anisopteromalus calandrae, from larvae of azuki bean weevil, Callosobruchus chinensis. Onodera J; Matsuyama S; Suzuki T; Fujii K J Chem Ecol; 2002 Jun; 28(6):1209-20. PubMed ID: 12184398 [TBL] [Abstract][Full Text] [Related]
2. Suitability of five species of stored-product insects as hosts for development and reproduction of the parasitoid Anisopteromalus calandrae (Hymenoptera: Pteromalidae). Ghimire MN; Phillips TW J Econ Entomol; 2007 Oct; 100(5):1732-9. PubMed ID: 17972654 [TBL] [Abstract][Full Text] [Related]
3. Different patterns of oviposition learning in two closely related ectoparasitoid wasps with contrasting reproductive strategies. Sasakawa K; Uchijima K; Shibao H; Shimada M Naturwissenschaften; 2013 Feb; 100(2):117-24. PubMed ID: 23212705 [TBL] [Abstract][Full Text] [Related]
4. Effects of prior experience on host selection and host utilization by two populations of Anisopteromalus calandrae (Hymenoptera: Pteromalidae). Ghimire MN; Phillips TW Environ Entomol; 2008 Oct; 37(5):1300-6. PubMed ID: 19036210 [TBL] [Abstract][Full Text] [Related]
5. Facultative hyperparasitism: extreme survival behaviour of the primary solitary ectoparasitoid, Dinarmus basalis. Rojas-Rousse D J Insect Sci; 2010; 10():101. PubMed ID: 20874388 [TBL] [Abstract][Full Text] [Related]
6. Learning-induced host preference in male parasitoid wasps as a potential driver of ecological speciation. Sasakawa K; Kon Y J Evol Biol; 2018 Nov; 31(11):1750-1755. PubMed ID: 30084139 [TBL] [Abstract][Full Text] [Related]
7. The response of Trissolcus basalis to footprint contact kairomones from Nezara viridula females is mediated by leaf epicuticular waxes. Colazza S; Lo Bue M; Lo Giudice D; Peri E Naturwissenschaften; 2009 Aug; 96(8):975-81. PubMed ID: 19455293 [TBL] [Abstract][Full Text] [Related]
8. Influence of host origin on host choice of the parasitoid Dinarmus basalis: does upbringing influence choices later in life? Sankara F; Dabiré LC; Ilboudo Z; Dugravot S; Cortesero AM; Sanon A J Insect Sci; 2014 Feb; 14():26. PubMed ID: 25373173 [TBL] [Abstract][Full Text] [Related]
9. Transgenic cry1C(⁎) gene rough rice line T1C-19 does not change the host preferences of the non-target stored product pest, Rhyzopertha dominica (Fabricius) (Coleoptera: Bostrichidae), and its parasitoid wasp, Anisopteromalus calandrae (Howard) (Hymenoptera: Pteromalidae). Sun X; Yan MJ; Zhang A; Wang MQ Ecotoxicol Environ Saf; 2015 Oct; 120():449-56. PubMed ID: 26150137 [TBL] [Abstract][Full Text] [Related]
10. The bean α-amylase inhibitor αAI-1 in genetically modified chickpea seeds does not harm parasitoid wasps. Lüthi C; Álvarez-Alfageme F; Romeis J Pest Manag Sci; 2018 Nov; 74(11):2444-2449. PubMed ID: 29569394 [TBL] [Abstract][Full Text] [Related]
11. Recognition of foreign oviposition-marking pheromone in a multi-trophic context. Stelinski LL; Rodriguez-Saona C; Meyer WL Naturwissenschaften; 2009 May; 96(5):585-92. PubMed ID: 19151965 [TBL] [Abstract][Full Text] [Related]
12. Direct determination of the stereoisomeric composition of callosobruchusic acid, the copulation release pheromone of the azuki bean weevil, Callosobruchus chinensis L., by the 2D-Ohrui-Akasaka method. Yajima A; Akasaka K; Yamamoto M; Ohmori S; Nukada T; Yabuta G J Chem Ecol; 2007 Jul; 33(7):1328-35. PubMed ID: 17516029 [TBL] [Abstract][Full Text] [Related]
13. Biological control of indianmeal moth and rice weevil by parasitoids with reference to the intraspecific competition pattern. Nam Y; Ji J; Na JH; Chun YS; Ryoo MI J Econ Entomol; 2011 Apr; 104(2):693-701. PubMed ID: 21510223 [TBL] [Abstract][Full Text] [Related]
14. Learning predator promotes coexistence of prey species in host-parasitoid systems. Ishii Y; Shimada M Proc Natl Acad Sci U S A; 2012 Mar; 109(13):5116-20. PubMed ID: 22411808 [TBL] [Abstract][Full Text] [Related]
15. Anthonomus grandis aggregation pheromone induces cotton indirect defence and attracts the parasitic wasp Bracon vulgaris. Magalhães DM; Da Silva ITFA; Borges M; Laumann RA; Blassioli-Moraes MC J Exp Bot; 2019 Mar; 70(6):1891-1901. PubMed ID: 30722044 [TBL] [Abstract][Full Text] [Related]
16. How host larval age, and nutrition and density of the parasitoid Dinarmus basalis (Hymenoptera: Pteromalidae) influence control of Acanthoscelides obtectus (Coleoptera: Bruchidae). Schmale I; Wäckers FL; Cardona C; Dorn S Bull Entomol Res; 2005 Apr; 95(2):145-50. PubMed ID: 15877863 [TBL] [Abstract][Full Text] [Related]
17. Protective mechanism of the Mexican bean weevil against high levels of alpha-amylase inhibitor in the common bean. Ishimoto M; Chrispeels MJ Plant Physiol; 1996 Jun; 111(2):393-401. PubMed ID: 8787024 [TBL] [Abstract][Full Text] [Related]
18. Chemotaxic Responses of Anisopteromalus calandrae (Howard) (Hymenoptera: Pteromalidae) to Odors of Larvae, Pupae, and the Diet of Lasioderma serricorne (Fabricius) (Coleoptera: Ptinidae). Bender E; Jahnke SM; Köhler A Neotrop Entomol; 2020 Apr; 49(2):171-178. PubMed ID: 31820338 [TBL] [Abstract][Full Text] [Related]
19. Characterization of resistance to three bruchid species (Callosobruchus spp., Coleoptera, Bruchidae) in cultivated rice bean (Vigna umbellata). Kashiwaba K; Tomooka N; Kaga A; Han OK; Vaughan DA J Econ Entomol; 2003 Feb; 96(1):207-13. PubMed ID: 12650364 [TBL] [Abstract][Full Text] [Related]
20. Comparative metabolomics analysis of Callosobruchus chinensis larvae under hypoxia, hypoxia/hypercapnia and normoxia. Cui S; Wang L; Qiu J; Liu Z; Geng X Pest Manag Sci; 2017 Jun; 73(6):1267-1276. PubMed ID: 27718517 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]