These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 12184687)

  • 1. A mechanism for mercury oxidation in coat-derived exhausts.
    Niksa S; Fujiwara N; Fujita Y; Tomura K; Moritomi H; Tuji T; Takasu S
    J Air Waste Manag Assoc; 2002 Aug; 52(8):894-901. PubMed ID: 12184687
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Predicting extents of mercury oxidation in coal-derived flue gases.
    Niksa S; Fujiwara N
    J Air Waste Manag Assoc; 2005 Jul; 55(7):930-9. PubMed ID: 16111132
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Kinetic modeling of homogeneous mercury oxidation: the importance of NO and H2O in predicting oxidation in coal-derived systems.
    Niksa S; Helble JJ; Fujiwara N
    Environ Sci Technol; 2001 Sep; 35(18):3701-6. PubMed ID: 11783648
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A predictive mechanism for mercury oxidation on selective catalytic reduction catalysts under coal-derived flue gas.
    Niksa S; Fujiwara N
    J Air Waste Manag Assoc; 2005 Dec; 55(12):1866-75. PubMed ID: 16408691
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Understanding mercury transformations in coal-fired power plants: evaluation of homogeneous Hg oxidation mechanisms.
    Krishnakumar B; Helble JJ
    Environ Sci Technol; 2007 Nov; 41(22):7870-5. PubMed ID: 18075101
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mercury oxidation promoted by a selective catalytic reduction catalyst under simulated Powder River Basin coal combustion conditions.
    Lee CW; Serre SD; Zhao Y; Lee SJ; Hastings TW
    J Air Waste Manag Assoc; 2008 Apr; 58(4):484-93. PubMed ID: 18422035
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Using bromine gas to enhance mercury removal from flue gas of coal-fired power plants.
    Liu SH; Yan NQ; Liu ZR; Qu Z; Wang HP; Chang SG; Miller C
    Environ Sci Technol; 2007 Feb; 41(4):1405-12. PubMed ID: 17593749
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Investigation of selective catalytic reduction impact on mercury speciation under simulated NOx emission control conditions.
    Lee CW; Srivastava RK; Ghorishi SB; Hastings TW; Stevens FM
    J Air Waste Manag Assoc; 2004 Dec; 54(12):1560-6. PubMed ID: 15648394
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of sulfur dioxide and nitric oxide on mercury oxidation and reduction under homogeneous conditions.
    Zhao Y; Mann MD; Olson ES; Pavlish JH; Dunham GE
    J Air Waste Manag Assoc; 2006 May; 56(5):628-35. PubMed ID: 16739799
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Significance of RuO2 modified SCR catalyst for elemental mercury oxidation in coal-fired flue gas.
    Yan N; Chen W; Chen J; Qu Z; Guo Y; Yang S; Jia J
    Environ Sci Technol; 2011 Jul; 45(13):5725-30. PubMed ID: 21662986
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mitigation of gaseous mercury emissions from waste-to-energy facilities: Homogeneous and heterogeneous Hg-oxidation pathways in presence of fly ashes.
    Rumayor M; Svoboda K; Švehla J; Pohořelý M; Šyc M
    J Environ Manage; 2018 Jan; 206():276-283. PubMed ID: 29096141
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Regenerable cobalt oxide loaded magnetosphere catalyst from fly ash for mercury removal in coal combustion flue gas.
    Yang J; Zhao Y; Zhang J; Zheng C
    Environ Sci Technol; 2014 Dec; 48(24):14837-43. PubMed ID: 25403026
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bromine chloride as an oxidant to improve elemental mercury removal from coal-fired flue gas.
    Qu Z; Yan N; Liu P; Chi Y; Jia J
    Environ Sci Technol; 2009 Nov; 43(22):8610-5. PubMed ID: 20028060
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Simultaneous control of Hg0, SO2, and NOx by novel oxidized calcium-based sorbents.
    Ghorishi SB; Singer CF; Jozewicz WS; Sedman CB; Srivastava RK
    J Air Waste Manag Assoc; 2002 Mar; 52(3):273-8. PubMed ID: 11924858
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Oxidation of mercury across selective catalytic reduction catalysts in coal-fired power plants.
    Senior CL
    J Air Waste Manag Assoc; 2006 Jan; 56(1):23-31. PubMed ID: 16499143
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The impact of wet flue gas desulfurization scrubbing on mercury emissions from coal-fired power stations.
    Niksa S; Fujiwara N
    J Air Waste Manag Assoc; 2005 Jul; 55(7):970-7. PubMed ID: 16111136
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhanced elemental mercury removal from coal-fired flue gas by sulfur-chlorine compounds.
    Yan NQ; Qu Z; Chi Y; Qiao SH; Dod RL; Chang SG; Miller C
    Environ Sci Technol; 2009 Jul; 43(14):5410-5. PubMed ID: 19708374
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of NOx control processes on mercury speciation in utility flue gas.
    Richardson C; Machalek T; Miller S; Dene C; Chang R
    J Air Waste Manag Assoc; 2002 Aug; 52(8):941-7. PubMed ID: 12184693
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Entrained-flow adsorption of mercury using activated carbon.
    Serre SD; Gullett BK; Ghorishi SB
    J Air Waste Manag Assoc; 2001 May; 51(5):733-41. PubMed ID: 11355461
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pilot-scale study of the effect of selective catalytic reduction catalyst on mercury speciation in Illinois and Powder River Basin coal combustion flue gases.
    Lee CW; Srivastava RK; Ghorishi SB; Karwowski J; Hastings TW; Hirschi JC
    J Air Waste Manag Assoc; 2006 May; 56(5):643-9. PubMed ID: 16739801
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.