These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 12184981)

  • 41. Interactive effects of water supply and defoliation on photosynthesis, plant water status and growth of Eucalyptus globulus Labill.
    Quentin AG; O'Grady AP; Beadle CL; Mohammed C; Pinkard EA
    Tree Physiol; 2012 Aug; 32(8):958-67. PubMed ID: 22874831
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Woody clockworks: circadian regulation of night-time water use in Eucalyptus globulus.
    Resco de Dios V; Díaz-Sierra R; Goulden ML; Barton CVM; Boer MM; Gessler A; Ferrio JP; Pfautsch S; Tissue DT
    New Phytol; 2013 Nov; 200(3):743-752. PubMed ID: 23795820
    [TBL] [Abstract][Full Text] [Related]  

  • 43. [Influence of thinning on regeneration in a coastal pinus thunbergii forest].
    Zhu J; Li F; Matsuzaki T; Gonda Y
    Ying Yong Sheng Tai Xue Bao; 2002 Nov; 13(11):1361-7. PubMed ID: 12624984
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Thinning increases understory diversity and biomass, and improves soil properties without decreasing growth of Chinese fir in southern China.
    Zhou L; Cai L; He Z; Wang R; Wu P; Ma X
    Environ Sci Pollut Res Int; 2016 Dec; 23(23):24135-24150. PubMed ID: 27640061
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Estimating water use by sugar maple trees: considerations when using heat-pulse methods in trees with deep functional sapwood.
    Pausch RC; Grote EE; Dawson TE
    Tree Physiol; 2000 Mar; 20(4):217-227. PubMed ID: 12651458
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Link between diurnal stem radius changes and tree water relations.
    Zweifel R; Item H; Häsler R
    Tree Physiol; 2001 Aug; 21(12-13):869-77. PubMed ID: 11498334
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Leaf water maintains daytime transpiration in young Cryptomeria japonica trees.
    Himeno S; Azuma W; Gyokusen K; Ishii HR
    Tree Physiol; 2017 Oct; 37(10):1394-1403. PubMed ID: 28575486
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Transpiration from a mature Eucalyptus globulus plantation in Portugal during a spring-summer period of progressively higher water deficit.
    David TS; Ferreira MI; David JS; Pereira JS
    Oecologia; 1997 Apr; 110(2):153-159. PubMed ID: 28307419
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Simulating nectarine tree transpiration and dynamic water storage from responses of leaf conductance to light and sap flow to stem water potential and vapor pressure deficit.
    Paudel I; Naor A; Gal Y; Cohen S
    Tree Physiol; 2015 Apr; 35(4):425-38. PubMed ID: 25618897
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Radial variation in sap velocity as a function of stem diameter and sapwood thickness in yellow-poplar trees.
    Wullschleger SD; King AW
    Tree Physiol; 2000 Apr; 20(8):511-518. PubMed ID: 12651431
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Transpiration of urban forests in the Los Angeles metropolitan area.
    Pataki DE; McCarthy HR; Litvak E; Pincetl S
    Ecol Appl; 2011 Apr; 21(3):661-77. PubMed ID: 21639035
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Transpiration of Eucalyptus woodlands across a natural gradient of depth-to-groundwater.
    Zolfaghar S; Villalobos-Vega R; Zeppel M; Cleverly J; Rumman R; Hingee M; Boulain N; Li Z; Eamus D
    Tree Physiol; 2017 Jul; 37(7):961-975. PubMed ID: 28369559
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Thinning effect on photosynthesis depends on needle ages in a Chinese fir (Cunninghamia lanceolata) plantation.
    Li RS; Yang QP; Zhang WD; Zheng WH; Chi YG; Xu M; Fang YT; Gessler A; Li MH; Wang SL
    Sci Total Environ; 2017 Feb; 580():900-906. PubMed ID: 27986315
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Sap flow estimates of stand transpiration at two slope positions in a Japanese cedar forest watershed.
    Kumagai T; Aoki S; Shimizu T; Otsuki K
    Tree Physiol; 2007 Feb; 27(2):161-8. PubMed ID: 17241959
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Whole-tree sap flow is substantially diminished by leaf herbivory.
    Cunningham SA; Pullen KR; Colloff MJ
    Oecologia; 2009 Jan; 158(4):633-40. PubMed ID: 18953575
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Influence of newly imposed salinity and waterlogging on Eucalyptus gracilis in South Australia.
    Barrett MS; Preiss KA; Sinclair R
    Tree Physiol; 2005 Oct; 25(10):1339-46. PubMed ID: 16076782
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Relationships between hydraulic architecture and leaf photosynthetic capacity in nitrogen-fertilized Eucalyptus grandis trees.
    Clearwater MJ; Meinzer FC
    Tree Physiol; 2001 Jul; 21(10):683-90. PubMed ID: 11446997
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Growth, leaf morphology, water use and tissue water relations of Eucalyptus globulus clones in response to water deficit.
    Pita P; Pardos JA
    Tree Physiol; 2001 Jun; 21(9):599-607. PubMed ID: 11390304
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Linking leaf and tree water use with an individual-tree model.
    Medlyn BE; Pepper DA; O'Grady AP; Keith H
    Tree Physiol; 2007 Dec; 27(12):1687-99. PubMed ID: 17938100
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Changes in sapwood permeability and anatomy with tree age and height in the broad-leaved evergreen species Eucalyptus regnans.
    England JR; Attiwill PM
    Tree Physiol; 2007 Aug; 27(8):1113-24. PubMed ID: 17472938
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.