These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

221 related articles for article (PubMed ID: 12185246)

  • 1. Structural insights into peptide bond formation.
    Hansen JL; Schmeing TM; Moore PB; Steitz TA
    Proc Natl Acad Sci U S A; 2002 Sep; 99(18):11670-5. PubMed ID: 12185246
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An induced-fit mechanism to promote peptide bond formation and exclude hydrolysis of peptidyl-tRNA.
    Schmeing TM; Huang KS; Strobel SA; Steitz TA
    Nature; 2005 Nov; 438(7067):520-4. PubMed ID: 16306996
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structures of five antibiotics bound at the peptidyl transferase center of the large ribosomal subunit.
    Hansen JL; Moore PB; Steitz TA
    J Mol Biol; 2003 Jul; 330(5):1061-75. PubMed ID: 12860128
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A pre-translocational intermediate in protein synthesis observed in crystals of enzymatically active 50S subunits.
    Schmeing TM; Seila AC; Hansen JL; Freeborn B; Soukup JK; Scaringe SA; Strobel SA; Moore PB; Steitz TA
    Nat Struct Biol; 2002 Mar; 9(3):225-30. PubMed ID: 11828326
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The structural basis of ribosome activity in peptide bond synthesis.
    Nissen P; Hansen J; Ban N; Moore PB; Steitz TA
    Science; 2000 Aug; 289(5481):920-30. PubMed ID: 10937990
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pseudouridines and pseudouridine synthases of the ribosome.
    Ofengand J; Malhotra A; Remme J; Gutgsell NS; Del Campo M; Jean-Charles S; Peil L; Kaya Y
    Cold Spring Harb Symp Quant Biol; 2001; 66():147-59. PubMed ID: 12762017
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Peptidyl-CCA deacylation on the ribosome promoted by induced fit and the O3'-hydroxyl group of A76 of the unacylated A-site tRNA.
    Simonović M; Steitz TA
    RNA; 2008 Nov; 14(11):2372-8. PubMed ID: 18818369
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cross-crystal averaging reveals that the structure of the peptidyl-transferase center is the same in the 70S ribosome and the 50S subunit.
    Simonović M; Steitz TA
    Proc Natl Acad Sci U S A; 2008 Jan; 105(2):500-5. PubMed ID: 18187576
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural insights into the roles of water and the 2' hydroxyl of the P site tRNA in the peptidyl transferase reaction.
    Schmeing TM; Huang KS; Kitchen DE; Strobel SA; Steitz TA
    Mol Cell; 2005 Nov; 20(3):437-48. PubMed ID: 16285925
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanism of peptide bond synthesis on the ribosome.
    Trobro S; Aqvist J
    Proc Natl Acad Sci U S A; 2005 Aug; 102(35):12395-400. PubMed ID: 16116099
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structures of deacylated tRNA mimics bound to the E site of the large ribosomal subunit.
    Schmeing TM; Moore PB; Steitz TA
    RNA; 2003 Nov; 9(11):1345-52. PubMed ID: 14561884
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sites of interaction of the CCA end of peptidyl-tRNA with 23S rRNA.
    Moazed D; Noller HF
    Proc Natl Acad Sci U S A; 1991 May; 88(9):3725-8. PubMed ID: 2023922
    [TBL] [Abstract][Full Text] [Related]  

  • 13. After the ribosome structures: how does peptidyl transferase work?
    Moore PB; Steitz TA
    RNA; 2003 Feb; 9(2):155-9. PubMed ID: 12554855
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ribosomal crystallography: peptide bond formation and its inhibition.
    Bashan A; Zarivach R; Schluenzen F; Agmon I; Harms J; Auerbach T; Baram D; Berisio R; Bartels H; Hansen HA; Fucini P; Wilson D; Peretz M; Kessler M; Yonath A
    Biopolymers; 2003 Sep; 70(1):19-41. PubMed ID: 12925991
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Revisiting the Haloarcula marismortui 50S ribosomal subunit model.
    Gabdulkhakov A; Nikonov S; Garber M
    Acta Crystallogr D Biol Crystallogr; 2013 Jun; 69(Pt 6):997-1004. PubMed ID: 23695244
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The 3D arrangement of the 23 S and 5 S rRNA in the Escherichia coli 50 S ribosomal subunit based on a cryo-electron microscopic reconstruction at 7.5 A resolution.
    Mueller F; Sommer I; Baranov P; Matadeen R; Stoldt M; Wöhnert J; Görlach M; van Heel M; Brimacombe R
    J Mol Biol; 2000 Apr; 298(1):35-59. PubMed ID: 10756104
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The complete atomic structure of the large ribosomal subunit at 2.4 A resolution.
    Ban N; Nissen P; Hansen J; Moore PB; Steitz TA
    Science; 2000 Aug; 289(5481):905-20. PubMed ID: 10937989
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ribosome-catalyzed peptide-bond formation with an A-site substrate covalently linked to 23S ribosomal RNA.
    Green R; Switzer C; Noller HF
    Science; 1998 Apr; 280(5361):286-9. PubMed ID: 9535658
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Direct crosslinking of the antitumor antibiotic sparsomycin, and its derivatives, to A2602 in the peptidyl transferase center of 23S-like rRNA within ribosome-tRNA complexes.
    Porse BT; Kirillov SV; Awayez MJ; Ottenheijm HC; Garrett RA
    Proc Natl Acad Sci U S A; 1999 Aug; 96(16):9003-8. PubMed ID: 10430885
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structures of triacetyloleandomycin and mycalamide A bind to the large ribosomal subunit of Haloarcula marismortui.
    Gürel G; Blaha G; Steitz TA; Moore PB
    Antimicrob Agents Chemother; 2009 Dec; 53(12):5010-4. PubMed ID: 19738021
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.