These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

86 related articles for article (PubMed ID: 1218525)

  • 1. The learning process for fine neuromuscular controls in skeletal muscles of man. VIII. Error of measurement and interindividual differences.
    Nordh E; Jonsson B; Ladd H
    Electromyogr Clin Neurophysiol; 1975; 15(5-6):525-36. PubMed ID: 1218525
    [No Abstract]   [Full Text] [Related]  

  • 2. The learning process for fine neuromuscular controls in skeletal muscles of man.
    Nordh E; Odont B; Jonsson B; Ladd H
    Electromyogr Clin Neurophysiol; 1974; 14(5-6):475-83. PubMed ID: 4457331
    [No Abstract]   [Full Text] [Related]  

  • 3. The learning process for fine neuromuscular controls in skeletal muscles of man. V. Electrode size.
    Jonsson B; Ladd H; Oist C
    Electromyogr Clin Neurophysiol; 1973; 13(4):391-9. PubMed ID: 4793191
    [No Abstract]   [Full Text] [Related]  

  • 4. The learning process for fine neuromuscular controls in skeletal muscles of man. I. Transfer of training between different muscles.
    Ladd H; Jonsson B; Lindegren U
    Electromyogr Clin Neurophysiol; 1972; 12(3):213-23. PubMed ID: 4636712
    [No Abstract]   [Full Text] [Related]  

  • 5. The learning process for fine neuromuscular controls in skeletal muscles of man. II. Transfer of training to the contralateral muscle.
    Jonsson B; Ladd H
    Electromyogr Clin Neurophysiol; 1973; 13(2):191-8. PubMed ID: 4732562
    [No Abstract]   [Full Text] [Related]  

  • 6. The learning process for fine neuromuscular controls in skeletal muscles of man. IV. The effect of different muscle lengths.
    Oist C; Jonsson B; Ladd H
    Electromyogr Clin Neurophysiol; 1973; 13(4):383-9. PubMed ID: 4793190
    [No Abstract]   [Full Text] [Related]  

  • 7. The learning process for fine neuromuscular controls in skeletal muscles of man. VI. The relationship between the ability to control random and fine neuromuscular activity.
    Oist C; Jonsson B; Ladd H
    Electromyogr Clin Neurophysiol; 1973; 13(5):505-12. PubMed ID: 4789618
    [No Abstract]   [Full Text] [Related]  

  • 8. The learning process for fine neuromuscular controls in skeletal muscles of man. 3. Transfer of training within muscles.
    Ladd H; Jonsson B
    Electromyogr Clin Neurophysiol; 1973; 13(3):345-61. PubMed ID: 4769240
    [No Abstract]   [Full Text] [Related]  

  • 9. Neuromuscular adaptations during the acquisition of muscle strength, power and motor tasks.
    Moritani T
    J Biomech; 1993; 26 Suppl 1():95-107. PubMed ID: 8505356
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fine neuromuscular control of the posterior deltoid muscle during resistance to finger extension.
    Simard TG
    Am J Phys Med; 1977 Dec; 56(6):275-92. PubMed ID: 596430
    [No Abstract]   [Full Text] [Related]  

  • 11. Firing rate of low-threshold motor units after maximal voluntary contraction.
    Ivanova T; Gantchev GN; Popivanov D
    Electromyogr Clin Neurophysiol; 1986; 26(1):69-78. PubMed ID: 3017687
    [No Abstract]   [Full Text] [Related]  

  • 12. Hemispheric differences in the relationship between corticomotor excitability changes following a fine-motor task and motor learning.
    Garry MI; Kamen G; Nordstrom MA
    J Neurophysiol; 2004 Apr; 91(4):1570-8. PubMed ID: 14627660
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Neuromuscular adaptation during skill acquisition on a two degree-of-freedom target-acquisition task: dynamic movement.
    Shemmell J; Tresilian JR; Riek S; Barry BK; Carson RG
    J Neurophysiol; 2005 Nov; 94(5):3058-68. PubMed ID: 15972829
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Motor nerve conduction velocity and stimulation threshold in man.
    Hausmanowa-Petrusewicz I; Kopec J
    Electromyography; 1968; 8(2):159-73. PubMed ID: 5715448
    [No Abstract]   [Full Text] [Related]  

  • 15. Neuromuscular adaptation during skill acquisition on a two degree-of-freedom target-acquisition task: isometric torque production.
    Shemmell J; Forner M; Tresilian JR; Riek S; Barry BK; Carson RG
    J Neurophysiol; 2005 Nov; 94(5):3046-57. PubMed ID: 15944230
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Volume conduction of motor unit potentials from different human muscles to long distances.
    Gydikov A; Gerilovsky L; Gatev P; Kostov K
    Electromyogr Clin Neurophysiol; 1982; 22(1-2):105-16. PubMed ID: 6279384
    [No Abstract]   [Full Text] [Related]  

  • 17. The physiology of static exercise.
    Petrofsky JS; Phillips CA
    Exerc Sport Sci Rev; 1986; 14():1-44. PubMed ID: 3015632
    [No Abstract]   [Full Text] [Related]  

  • 18. [Changes in myoelectric activity during a sensorimotor learning process].
    Metz AM
    Z Psychol Z Angew Psychol; 1970; 178(1):51-88. PubMed ID: 4396670
    [No Abstract]   [Full Text] [Related]  

  • 19. The effect of hexafluorenium on the neuromuscular refractory period of anesthetized man.
    Epstein RA; Jackson SH
    J Pharmacol Exp Ther; 1969 Nov; 170(1):153-6. PubMed ID: 5350999
    [No Abstract]   [Full Text] [Related]  

  • 20. Pathophysiology of dystonias.
    Rothwell JC; Obeso JA; Day BL; Marsden CD
    Adv Neurol; 1983; 39():851-63. PubMed ID: 6660125
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 5.