These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
55 related articles for article (PubMed ID: 12185519)
1. Bone substitutes as carriers for transforming growth factor-beta(1) (TGF-beta(1)). Gille J; Dorn B; Kekow J; Bruns J; Behrens P Int Orthop; 2002; 26(4):203-6. PubMed ID: 12185519 [TBL] [Abstract][Full Text] [Related]
2. [Influence of methylprednisolone and transforming growth factor-beta on wound healing]. Osaka Y Hokkaido Igaku Zasshi; 1997 Mar; 72(2):181-94. PubMed ID: 9145311 [TBL] [Abstract][Full Text] [Related]
3. An in vitro evaluation of PCL-TCP composites as delivery systems for platelet-rich plasma. Rai B; Teoh SH; Ho KH J Control Release; 2005 Oct; 107(2):330-42. PubMed ID: 16085332 [TBL] [Abstract][Full Text] [Related]
5. The enhancement in wound healing by transforming growth factor-beta 1 (TGF-beta 1) depends on the topical delivery system. Puolakkainen PA; Twardzik DR; Ranchalis JE; Pankey SC; Reed MJ; Gombotz WR J Surg Res; 1995 Mar; 58(3):321-9. PubMed ID: 7885030 [TBL] [Abstract][Full Text] [Related]
6. Interactions of corneal cells with transforming growth factor beta 2-modified poly dimethyl siloxane surfaces. Merrett K; Griffith CM; Deslandes Y; Pleizier G; Dubé MA; Sheardown H J Biomed Mater Res A; 2003 Dec; 67(3):981-93. PubMed ID: 14613248 [TBL] [Abstract][Full Text] [Related]
7. Effect of different bone substitutes on the concentration of growth factors in platelet-rich plasma. Hee Soon Cho ; Park SY; Kim S; Sang Keun Bae ; Duk Seop Shin ; Ahn MW J Biomater Appl; 2008 May; 22(6):545-57. PubMed ID: 18194993 [TBL] [Abstract][Full Text] [Related]
8. Differential growth factor retention by platelet-rich plasma composites. Tsay RC; Vo J; Burke A; Eisig SB; Lu HH; Landesberg R J Oral Maxillofac Surg; 2005 Apr; 63(4):521-8. PubMed ID: 15789325 [TBL] [Abstract][Full Text] [Related]
9. Use of collagen sponge incorporating transforming growth factor-beta1 to promote bone repair in skull defects in rabbits. Ueda H; Hong L; Yamamoto M; Shigeno K; Inoue M; Toba T; Yoshitani M; Nakamura T; Tabata Y; Shimizu Y Biomaterials; 2002 Feb; 23(4):1003-10. PubMed ID: 11791902 [TBL] [Abstract][Full Text] [Related]
10. Effects of the controlled-released TGF-beta 1 from chitosan microspheres on chondrocytes cultured in a collagen/chitosan/glycosaminoglycan scaffold. Lee JE; Kim KE; Kwon IC; Ahn HJ; Lee SH; Cho H; Kim HJ; Seong SC; Lee MC Biomaterials; 2004 Aug; 25(18):4163-73. PubMed ID: 15046906 [TBL] [Abstract][Full Text] [Related]
11. [The effect of basic fibroblast growth factor on myofibroblasts and its significance on wound healing]. Cheng B; Fu X; Sheng Z; Gu X; Sun T; Sun X Zhonghua Yi Xue Za Zhi; 2002 Sep; 82(17):1187-91. PubMed ID: 12475407 [TBL] [Abstract][Full Text] [Related]
12. Biodegradable chitosan scaffolds containing microspheres as carriers for controlled transforming growth factor-beta1 delivery for cartilage tissue engineering. Cai DZ; Zeng C; Quan DP; Bu LS; Wang K; Lu HD; Li XF Chin Med J (Engl); 2007 Feb; 120(3):197-203. PubMed ID: 17355821 [TBL] [Abstract][Full Text] [Related]
13. Dual growth factor delivery from degradable oligo(poly(ethylene glycol) fumarate) hydrogel scaffolds for cartilage tissue engineering. Holland TA; Tabata Y; Mikos AG J Control Release; 2005 Jan; 101(1-3):111-25. PubMed ID: 15588898 [TBL] [Abstract][Full Text] [Related]
14. Effects of a chitosan scaffold containing TGF-beta1 encapsulated chitosan microspheres on in vitro chondrocyte culture. Lee JE; Kim SE; Kwon IC; Ahn HJ; Cho H; Lee SH; Kim HJ; Seong SC; Lee MC Artif Organs; 2004 Sep; 28(9):829-39. PubMed ID: 15320946 [TBL] [Abstract][Full Text] [Related]
15. Effect of triple growth factor controlled delivery by a brushite-PLGA system on a bone defect. Reyes R; De la Riva B; Delgado A; Hernández A; Sánchez E; Évora C Injury; 2012 Mar; 43(3):334-42. PubMed ID: 22035848 [TBL] [Abstract][Full Text] [Related]
16. Transforming growth factor-beta 1 (TGF-beta1) prevents the age-dependent decrease in bone formation in human osteoblast/implant cultures. Zhang H; Aronow MS; Gronowicz GA J Biomed Mater Res A; 2005 Oct; 75(1):98-105. PubMed ID: 16044414 [TBL] [Abstract][Full Text] [Related]
17. Marrow-derived mesenchymal stem cells-directed bone regeneration in the dog mandible: a comparison between biphasic calcium phosphate and natural bone mineral. Jafarian M; Eslaminejad MB; Khojasteh A; Mashhadi Abbas F; Dehghan MM; Hassanizadeh R; Houshmand B Oral Surg Oral Med Oral Pathol Oral Radiol Endod; 2008 May; 105(5):e14-24. PubMed ID: 18442730 [TBL] [Abstract][Full Text] [Related]
18. Bone growth into a ceramic-filled defect around an implant. The response to transforming growth factor beta1. Clarke SA; Brooks RA; Lee PT; Rushton N J Bone Joint Surg Br; 2004 Jan; 86(1):126-34. PubMed ID: 14765880 [TBL] [Abstract][Full Text] [Related]
19. The use of porous calcium phosphate scaffolds with transforming growth factor beta 1 as an onlay bone graft substitute. Huse RO; Quinten Ruhe P; Wolke JG; Jansen JA Clin Oral Implants Res; 2004 Dec; 15(6):741-9. PubMed ID: 15533136 [TBL] [Abstract][Full Text] [Related]
20. Controlled-release of IGF-I and TGF-beta1 in a photopolymerizing hydrogel for cartilage tissue engineering. Elisseeff J; McIntosh W; Fu K; Blunk BT; Langer R J Orthop Res; 2001 Nov; 19(6):1098-104. PubMed ID: 11781011 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]