BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

74 related articles for article (PubMed ID: 12185592)

  • 21. Recombinant expression of different mutant K-ras gene in pancreatic cancer Bxpc-3 cells and its effects on chemotherapy sensitivity.
    Shao T; Zheng Y; Zhao B; Li T; Cheng K; Cai W
    Sci China Life Sci; 2014 Oct; 57(10):1011-7. PubMed ID: 25216706
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Thymosinalpha1 stimulates cell proliferation by activating ERK1/2, JNK, and increasing cytokine secretion in human pancreatic cancer cells.
    Li M; Feurino LW; Li F; Wang H; Zhai Q; Fisher WE; Chen C; Yao Q
    Cancer Lett; 2007 Apr; 248(1):58-67. PubMed ID: 16828224
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Dominant negative mutants of mitogen-activated protein kinase pathway.
    Arboleda MJ; Eberwein D; Hibner B; Lyons JF
    Methods Enzymol; 2001; 332():353-67. PubMed ID: 11305110
    [No Abstract]   [Full Text] [Related]  

  • 24. Transfection of SSTR-1 and SSTR-2 inhibits Panc-1 cell proliferation and renders Panc-1 cells responsive to somatostatin analogue.
    Li M; Zhang R; Li F; Wang H; Kim HJ; Becnel L; Yao Q; Chen C; Fisher WE
    J Am Coll Surg; 2005 Oct; 201(4):571-8. PubMed ID: 16183496
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The MAPK kinase kinase-1 is essential for stress-induced pancreatic islet cell death.
    Mokhtari D; Myers JW; Welsh N
    Endocrinology; 2008 Jun; 149(6):3046-53. PubMed ID: 18308848
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Therapeutic effect of c-Jun N-terminal kinase inhibition on pancreatic cancer.
    Takahashi R; Hirata Y; Sakitani K; Nakata W; Kinoshita H; Hayakawa Y; Nakagawa H; Sakamoto K; Hikiba Y; Ijichi H; Moses HL; Maeda S; Koike K
    Cancer Sci; 2013 Mar; 104(3):337-44. PubMed ID: 23237571
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Development of an enzyme-linked immunosorbent assay (ELISA) for the specific detection of MEKK1 expression in cells.
    Ding Y; Huang D; Chen XG
    J Pharmacol Toxicol Methods; 2005; 51(2):159-67. PubMed ID: 15767210
    [TBL] [Abstract][Full Text] [Related]  

  • 28. SAK-HV Decreases the Self-Ubiquitination of MEKK1 to Promote Macrophage Proliferation via MAPK/ERK and JNK Pathways.
    Zhang C; Chen Y; Gan X; Huang Z; Zou M; Fu W; Xing W; Xu D
    Int J Mol Sci; 2017 Apr; 18(4):. PubMed ID: 28422048
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Cisplatin-resistance involves the defective processing of MEKK1 in human ovarian adenocarcinoma 2008/C13 cells.
    Gebauer G; Mirakhur B; Nguyen Q; Shore SK; Simpkins H; Dhanasekaran N
    Int J Oncol; 2000 Feb; 16(2):321-5. PubMed ID: 10639576
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Antisense oligonucleotides specific to mutated K-ras genes inhibit invasiveness of human pancreatic cancer cell lines.
    Nakada Y; Saito S; Ohzawa K; Morioka CY; Kita K; Minemura M; Takahara T; Watanabe A
    Pancreatology; 2001; 1(4):314-9. PubMed ID: 12120210
    [TBL] [Abstract][Full Text] [Related]  

  • 31. MarvelD3 couples tight junctions to the MEKK1-JNK pathway to regulate cell behavior and survival.
    Steed E; Elbediwy A; Vacca B; Dupasquier S; Hemkemeyer SA; Suddason T; Costa AC; Beaudry JB; Zihni C; Gallagher E; Pierreux CE; Balda MS; Matter K
    J Cell Biol; 2014 Mar; 204(5):821-38. PubMed ID: 24567356
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Thymosin beta-10 is aberrantly expressed in pancreatic cancer and induces JNK activation.
    Li M; Zhang Y; Zhai Q; Feurino LW; Fisher WE; Chen C; Yao Q
    Cancer Invest; 2009 Mar; 27(3):251-6. PubMed ID: 19194824
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Smad4 inhibits cell migration via suppression of JNK activity in human pancreatic carcinoma PANC-1 cells.
    Zhang X; Cao J; Pei Y; Zhang J; Wang Q
    Oncol Lett; 2016 May; 11(5):3465-3470. PubMed ID: 27123137
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The clinical value, regulatory mechanisms, and gene network of the cancer-testis gene STK31 in pancreatic cancer.
    Zhang K; Lu Z; Zhu Y; Tian L; Zhang J; Xi C; Gao W; Jiang K; Miao Y
    Oncotarget; 2017 May; 8(21):35154-35164. PubMed ID: 28422722
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Identification of dysregulated pathways associated with pancreatic cancer by survival analysis.
    Yuan QY; Gu YP; Wang CJ; Zhang H; Wang XP
    Mol Med Rep; 2015 Jan; 11(1):277-82. PubMed ID: 25333741
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Disruption of actin filaments and suppression of pancreatic cancer cell viability and migration following treatment with polyisoprenylated cysteinyl amides.
    Nkembo AT; Salako O; Poku RA; Amissah F; Ntantie E; Flores-Rozas H; Lamango NS
    Am J Cancer Res; 2016; 6(11):2532-2546. PubMed ID: 27904769
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Shining the light on aurora-a kinase as a drug target in pancreatic cancer.
    Bearss DJ
    Mol Cancer Ther; 2011 Nov; 10(11):2012. PubMed ID: 22072799
    [No Abstract]   [Full Text] [Related]  

  • 38. The Kinase Mirk/dyrk1B: A Possible Therapeutic Target in Pancreatic Cancer.
    Friedman E
    Cancers (Basel); 2010 Jul; 2(3):1492-512. PubMed ID: 24281169
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Association between mitogen-activated protein kinase kinase kinase 1 polymorphisms and breast cancer susceptibility: a meta-analysis of 20 case-control studies.
    Zheng Q; Ye J; Wu H; Yu Q; Cao J
    PLoS One; 2014; 9(3):e90771. PubMed ID: 24595411
    [TBL] [Abstract][Full Text] [Related]  

  • 40. MAP3K1: Genomic Alterations in Cancer and Function in Promoting Cell Survival or Apoptosis.
    Pham TT; Angus SP; Johnson GL
    Genes Cancer; 2013 Nov; 4(11-12):419-26. PubMed ID: 24386504
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.