These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Experimental verification of the quasi-steady approximation for aerodynamic sound generation by pulsating jets in tubes. Zhang Z; Mongeau L; Frankel SH J Acoust Soc Am; 2002 Oct; 112(4):1652-63. PubMed ID: 12398470 [TBL] [Abstract][Full Text] [Related]
4. Broadband sound generation by confined pulsating jets in a mechanical model of the human larynx. Zhang Z; Mongeau LG J Acoust Soc Am; 2006 Jun; 119(6):3995-4005. PubMed ID: 16838542 [TBL] [Abstract][Full Text] [Related]
5. A multi-mode screech frequency prediction formula for circular supersonic jets. Gao JH; Li XD J Acoust Soc Am; 2010 Mar; 127(3):1251-7. PubMed ID: 20329824 [TBL] [Abstract][Full Text] [Related]
6. ARTSTREAM: a neural network model of auditory scene analysis and source segregation. Grossberg S; Govindarajan KK; Wyse LL; Cohen MA Neural Netw; 2004 May; 17(4):511-36. PubMed ID: 15109681 [TBL] [Abstract][Full Text] [Related]
7. Analysis of the radiated information in spinning sound fields. Carley M J Acoust Soc Am; 2010 Oct; 128(4):1679-84. PubMed ID: 20968340 [TBL] [Abstract][Full Text] [Related]
8. Acoustic intensity-based method for sound radiations in a uniform flow. Yu C; Zhou Z; Zhuang M J Acoust Soc Am; 2009 Nov; 126(5):2198-205. PubMed ID: 19894800 [TBL] [Abstract][Full Text] [Related]
9. Data-educed broadband equivalent acoustic source model for supersonic jet noise. Neilsen TB; Vaughn AB; Gee KL; Akamine M; Okamoto K; Teramoto S; Tsutsumi S J Acoust Soc Am; 2019 Nov; 146(5):3409. PubMed ID: 31795640 [TBL] [Abstract][Full Text] [Related]
11. A synthesis approach for reproducing the response of aircraft panels to a turbulent boundary layer excitation. Bravo T; Maury C J Acoust Soc Am; 2011 Jan; 129(1):143-53. PubMed ID: 21302997 [TBL] [Abstract][Full Text] [Related]
13. Investigation of the sound generation mechanisms for in-duct orifice plates. Tao F; Joseph P; Zhang X; Stalnov O; Siercke M; Scheel H J Acoust Soc Am; 2017 Aug; 142(2):561. PubMed ID: 28863568 [TBL] [Abstract][Full Text] [Related]
14. Planar nearfield acoustical holography in moving fluid medium at subsonic and uniform velocity. Kwon HS; Niu Y; Kim YJ J Acoust Soc Am; 2010 Oct; 128(4):1823-32. PubMed ID: 20968355 [TBL] [Abstract][Full Text] [Related]
15. Modeling the voice source in terms of spectral slopes. Garellek M; Samlan R; Gerratt BR; Kreiman J J Acoust Soc Am; 2016 Mar; 139(3):1404-10. PubMed ID: 27036277 [TBL] [Abstract][Full Text] [Related]
16. Characteristics of a pulsating jet through a small modulated orifice, with application to voice production. Mongeau L; Franchek N; Coker CH; Kubli RA J Acoust Soc Am; 1997 Aug; 102(2 Pt 1):1121-33. PubMed ID: 9265759 [TBL] [Abstract][Full Text] [Related]
17. Whistling of an orifice in a reverberating duct at low Mach number. Lacombe R; Moussou P; Aurégan Y J Acoust Soc Am; 2011 Nov; 130(5):2662-72. PubMed ID: 22087893 [TBL] [Abstract][Full Text] [Related]
18. Measured wavenumber: frequency spectrum associated with acoustic and aerodynamic wall pressure fluctuations. Arguillat B; Ricot D; Bailly C; Robert G J Acoust Soc Am; 2010 Oct; 128(4):1647-55. PubMed ID: 20968337 [TBL] [Abstract][Full Text] [Related]
19. Effects of flow gradients on directional radiation of human voice. Pulkki V; Lähivaara T; Huhtakallio I J Acoust Soc Am; 2018 Feb; 143(2):1173. PubMed ID: 29495729 [TBL] [Abstract][Full Text] [Related]