BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 12186049)

  • 21. Parameterization of the voice source by combining spectral decay and amplitude features of the glottal flow.
    Alku P; Vilkman E; Laukkanen AM
    J Speech Lang Hear Res; 1998 Oct; 41(5):990-1002. PubMed ID: 9771623
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Vocal intensity in speakers and singers.
    Titze IR; Sundberg J
    J Acoust Soc Am; 1992 May; 91(5):2936-46. PubMed ID: 1629486
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effects of prolonged oral reading on time-based glottal flow waveform parameters with special reference to gender differences.
    Lauri ER; Alku P; Vilkman E; Sala E; Sihvo M
    Folia Phoniatr Logop; 1997; 49(5):234-46. PubMed ID: 9311158
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Glottal flow through a two-mass model: comparison of Navier-Stokes solutions with simplified models.
    de Vries MP; Schutte HK; Veldman AE; Verkerke GJ
    J Acoust Soc Am; 2002 Apr; 111(4):1847-53. PubMed ID: 12002868
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Further studies of phonation threshold pressure in a physical model of the vocal fold mucosa.
    Chan RW; Titze IR; Titze MR
    J Acoust Soc Am; 1997 Jun; 101(6):3722-7. PubMed ID: 9193059
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Approximations of open quotient and speed quotient from glottal airflow and EGG waveforms: effects of measurement criteria and sound pressure level.
    Sapienza CM; Stathopoulos ET; Dromey C
    J Voice; 1998 Mar; 12(1):31-43. PubMed ID: 9619977
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Estimating the spectral tilt of the glottal source from telephone speech using a deep neural network.
    Jokinen E; Alku P
    J Acoust Soc Am; 2017 Apr; 141(4):EL327. PubMed ID: 28464691
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Glottal Adduction and Subglottal Pressure in Singing.
    Herbst CT; Hess M; Müller F; Švec JG; Sundberg J
    J Voice; 2015 Jul; 29(4):391-402. PubMed ID: 25944295
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Using electroglottographic real-time feedback to control posterior glottal adduction during phonation.
    Herbst CT; Howard D; Schlömicher-Thier J
    J Voice; 2010 Jan; 24(1):72-85. PubMed ID: 19185453
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Flow Glottogram Characteristics and Perceived Degree of Phonatory Pressedness.
    Millgård M; Fors T; Sundberg J
    J Voice; 2016 May; 30(3):287-92. PubMed ID: 26001499
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Some phonatory and resonatory characteristics of the rock, pop, soul, and Swedish dance band styles of singing.
    Borch DZ; Sundberg J
    J Voice; 2011 Sep; 25(5):532-7. PubMed ID: 20926250
    [TBL] [Abstract][Full Text] [Related]  

  • 32. SIM--simultaneous inverse filtering and matching of a glottal flow model for acoustic speech signals.
    Fröhlich M; Michaelis D; Strube HW
    J Acoust Soc Am; 2001 Jul; 110(1):479-88. PubMed ID: 11508972
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Glottal closure, transglottal airflow, and voice quality in healthy middle-aged women.
    Södersten M; Hertegård S; Hammarberg B
    J Voice; 1995 Jun; 9(2):182-97. PubMed ID: 7620541
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The pitch rise paradigm: a new task for real-time endoscopy of non-stationary phonation.
    Rasp O; Lohscheller J; Doellinger M; Eysholdt U; Hoppe U
    Folia Phoniatr Logop; 2006; 58(3):175-85. PubMed ID: 16636565
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Flow separation in a computational oscillating vocal fold model.
    Alipour F; Scherer RC
    J Acoust Soc Am; 2004 Sep; 116(3):1710-9. PubMed ID: 15478438
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Phonatory Strategies of Male Vocalists in Singing Diatonic Scales With Various Dynamic Shapings.
    Vurma A
    J Voice; 2017 Mar; 31(2):254.e17-254.e29. PubMed ID: 27469449
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A comparison of vocal tract perturbation patterns based on statistical and acoustic considerations.
    Story BH
    J Acoust Soc Am; 2007 Oct; 122(4):EL107-14. PubMed ID: 17902738
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Modeling measured glottal volume velocity waveforms.
    Verneuil A; Berry DA; Kreiman J; Gerratt BR; Ye M; Berke GS
    Ann Otol Rhinol Laryngol; 2003 Feb; 112(2):120-31. PubMed ID: 12597284
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The effects of post-loading rest on acoustic parameters with special reference to gender and ergonomic factors.
    Vintturi J; Alku P; Lauri ER; Sala E; Sihvo M; Vilkman E
    Folia Phoniatr Logop; 2001; 53(6):338-50. PubMed ID: 11721140
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Contact quotient versus closed quotient: a comparative study on professional male singers.
    Lã FM; Sundberg J
    J Voice; 2015 Mar; 29(2):148-54. PubMed ID: 25510160
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.