BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 12186289)

  • 21. Fractionation, Mobility, and Contamination Assessment of Potentially Toxic Metals in Urban Soils in Four Industrial Serbian Cities.
    Pavlović D; Pavlović M; Čakmak D; Kostić O; Jarić S; Sakan S; Đorđević D; Mitrović M; Gržetić I; Pavlović P
    Arch Environ Contam Toxicol; 2018 Oct; 75(3):335-350. PubMed ID: 29508032
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Assessing the efficacy over time of the addition of industrial by-products to remediate contaminated soils at a pilot-plant scale.
    González-Núñez R; Rigol A; Vidal M
    Environ Monit Assess; 2017 Apr; 189(4):155. PubMed ID: 28281133
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Nonequilibrium leaching behavior of metallic elements (Cu, Zn, As, Cd, and Pb) from soils collected from long-term abandoned mine sites.
    Kim J; Hyun S
    Chemosphere; 2015 Sep; 134():150-8. PubMed ID: 25935604
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Pollution in the urban soils of Lianyungang, China, evaluated using a pollution index, mobility of heavy metals, and enzymatic activities.
    Li Y; Li HG; Liu FC
    Environ Monit Assess; 2017 Jan; 189(1):34. PubMed ID: 28013473
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Variations in heavy metal contamination of stream water and groundwater affected by an abandoned lead-zinc mine in Korea.
    Lee JY; Choi JC; Lee KK
    Environ Geochem Health; 2005 Sep; 27(3):237-57. PubMed ID: 16059780
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Spatial Distribution of Heavy Metals and the Environmental Quality of Soil in the Northern Plateau of Spain by Geostatistical Methods.
    Santos-Francés F; Martínez-Graña A; Zarza CÁ; Sánchez AG; Rojo PA
    Int J Environ Res Public Health; 2017 May; 14(6):. PubMed ID: 28587142
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Heavy metal contamination of the soils used for stocking raw materials in the former ILVA iron-steel industrial plant of Bagnoli (southern Italy).
    Adamo P; Arienzo M; Bianco MR; Terribile F; Violante P
    Sci Total Environ; 2002 Aug; 295(1-3):17-34. PubMed ID: 12186286
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Distribution of metals and arsenic in soils of central victoria (creswick-ballarat), australia.
    Sultan K
    Arch Environ Contam Toxicol; 2007 Apr; 52(3):339-46. PubMed ID: 17253097
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Mobilization of heavy metals and arsenic in polluted wetland soils and its dependence on dissolved organic matter.
    Kalbitz K; Wennrich R
    Sci Total Environ; 1998 Jan; 209(1):27-39. PubMed ID: 9496662
    [TBL] [Abstract][Full Text] [Related]  

  • 30. [Study on pollution evaluation of heavy metal in surface soil of the original site of Qingdao North Station].
    Zhu L; Jia YG; Pan YY
    Huan Jing Ke Xue; 2013 Sep; 34(9):3663-8. PubMed ID: 24289020
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Leaching potential of heavy metals (Cd, Ni, Pb, Cu and Zn) from acidic sandy soil amended with dolomite phosphate rock (DPR) fertilizers.
    Chen GC; He ZL; Stoffella PJ; Yang XE; Yu S; Yang JY; Calvert DV
    J Trace Elem Med Biol; 2006; 20(2):127-33. PubMed ID: 16785053
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Determination of heavy metals (Cd, Cr, Cu, Fe, Ni, Pb, Zn) by ICP-OES and their speciation in Algerian Mediterranean Sea sediments after a five-stage sequential extraction procedure.
    Alomary AA; Belhadj S
    Environ Monit Assess; 2007 Dec; 135(1-3):265-80. PubMed ID: 17342430
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Partitioning and potential mobilization of aluminum, arsenic, iron, and heavy metals in tropical active and post-active acid sulfate soils: Influence of long-term paddy rice cultivation.
    Sukitprapanon T; Suddhiprakarn A; Kheoruenromne I; Gilkes RJ
    Chemosphere; 2018 Apr; 197():691-702. PubMed ID: 29407833
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Heavy metal pollution caused by small-scale metal ore mining activities: A case study from a polymetallic mine in South China.
    Sun Z; Xie X; Wang P; Hu Y; Cheng H
    Sci Total Environ; 2018 Oct; 639():217-227. PubMed ID: 29787905
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Metal contamination of soils and crops affected by the Chenzhou lead/zinc mine spill (Hunan, China).
    Liu H; Probst A; Liao B
    Sci Total Environ; 2005 Mar; 339(1-3):153-66. PubMed ID: 15740766
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Environmental monitoring of heavy metals and arsenic from Ag-Pb-Zn mining: a case study over two millennia.
    Stüben D; Berner Z; Kappes B; Puchelt H
    Environ Monit Assess; 2001 Jul; 70(1-2):181-200. PubMed ID: 11516013
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Assessment of metal contamination using X-ray fluorescence spectrometry and the toxicity characteristic leaching procedure (TCLP) during remediation of a waste disposal site in Antarctica.
    Stark SC; Snape I; Graham NJ; Brennan JC; Gore DB
    J Environ Monit; 2008 Jan; 10(1):60-70. PubMed ID: 18175018
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Mobility and fractionation of arsenic, chromium and copper in thermally treated soil.
    Nordmark D; Kumpiene J; Andreas L; Lagerkvist A
    Waste Manag Res; 2011 Jan; 29(1):3-12. PubMed ID: 20880937
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Ecological and human health risk assessments in the context of soil heavy metal pollution in a typical industrial area of Shanghai, China.
    Gao J; Wang L
    Environ Sci Pollut Res Int; 2018 Sep; 25(27):27090-27105. PubMed ID: 30019135
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Pollution of montane soil with Cu, Zn, As, Sb, Pb, and nitrate in Kanto, Japan.
    Takamatsu T; Watanabe M; Koshikawa MK; Murata T; Yamamura S; Hayashi S
    Sci Total Environ; 2010 Mar; 408(8):1932-42. PubMed ID: 20153018
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.