BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 12186544)

  • 1. In vitro evolution of amphioxus insulin-like peptide to mammalian insulin.
    Guo ZY; Shen L; Gu W; Wu AZ; Ma JG; Feng YM
    Biochemistry; 2002 Aug; 41(34):10603-7. PubMed ID: 12186544
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Insulin-like compounds related to the amphioxus insulin-like peptide.
    Chu YC; Hu SQ; Zong L; Burke GT; Gammeltoft S; Chan SJ; Steiner DF; Katsoyannis PG
    Biochemistry; 1994 Sep; 33(37):11278-85. PubMed ID: 7727378
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High-potency hybrid compounds related to insulin and amphioxus insulin-like peptide.
    Chu YC; Burke GT; Gammeltoft S; Chan SJ; Steiner DF; Katsoyannis PG
    Biochemistry; 1994 Nov; 33(44):13087-92. PubMed ID: 7947713
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Four new monomeric insulins obtained by alanine scanning the dimer-forming surface of the insulin molecule.
    Chen H; Shi M; Guo ZY; Tang YH; Qiao ZS; Liang ZH; Feng YM
    Protein Eng; 2000 Nov; 13(11):779-82. PubMed ID: 11161109
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structure and expression of the insulin-like peptide receptor from amphioxus.
    Pashmforoush M; Chan SJ; Steiner DF
    Mol Endocrinol; 1996 Jul; 10(7):857-66. PubMed ID: 8813726
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Refolding of amphioxus insulin-like peptide: implications of a bifurcating evolution of the different folding behavior of insulin and insulin-like growth factor 1.
    Wang S; Guo ZY; Shen L; Zhang YJ; Feng YM
    Biochemistry; 2003 Aug; 42(32):9687-93. PubMed ID: 12911310
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Expression, Purification, Characterization of Amphioxus Insulin-like Peptide and Preparation of Polyclonal Antibody to It.
    Shen L; Guo ZY; Chen Y; Liu LY; Feng YM
    Sheng Wu Hua Xue Yu Sheng Wu Wu Li Xue Bao (Shanghai); 2001; 33(6):629-633. PubMed ID: 12035053
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Toward understanding the role of insulin alpha-helix II in the growth-promoting activity of insulin.
    Chen H; Feng YM
    Biol Chem; 2001 Jul; 382(7):1057-62. PubMed ID: 11530936
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evolution of the insulin superfamily: cloning of a hybrid insulin/insulin-like growth factor cDNA from amphioxus.
    Chan SJ; Cao QP; Steiner DF
    Proc Natl Acad Sci U S A; 1990 Dec; 87(23):9319-23. PubMed ID: 1701257
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mutations at the dimer, hexamer, and receptor-binding surfaces of insulin independently affect insulin-insulin and insulin-receptor interactions.
    Shoelson SE; Lu ZX; Parlautan L; Lynch CS; Weiss MA
    Biochemistry; 1992 Feb; 31(6):1757-67. PubMed ID: 1737029
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification, evolution and expression of an insulin-like peptide in the cephalochordate Branchiostoma lanceolatum.
    Lecroisey C; Le Pétillon Y; Escriva H; Lammert E; Laudet V
    PLoS One; 2015; 10(3):e0119461. PubMed ID: 25774519
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mutagenesis of the three conserved valine residues: consequence on the foldability of insulin.
    Guo ZY; Wang S; Tang YH; Feng YM
    Biochim Biophys Acta; 2004 Jun; 1699(1-2):103-9. PubMed ID: 15158717
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Importance of the solvent-exposed residues of the insulin B chain alpha-helix for receptor binding.
    Glendorf T; Sørensen AR; Nishimura E; Pettersson I; Kjeldsen T
    Biochemistry; 2008 Apr; 47(16):4743-51. PubMed ID: 18376848
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chiral mutagenesis of insulin. Foldability and function are inversely regulated by a stereospecific switch in the B chain.
    Nakagawa SH; Zhao M; Hua QX; Hu SQ; Wan ZL; Jia W; Weiss MA
    Biochemistry; 2005 Apr; 44(13):4984-99. PubMed ID: 15794637
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mutational analysis of the three conserved valine residues of insulin and a proposal of "isosteric residue".
    Guo ZY; Tang YH; Zhang Z; Feng YM
    IUBMB Life; 2001 Dec; 52(6):309-14. PubMed ID: 11895080
    [TBL] [Abstract][Full Text] [Related]  

  • 16. How insulin binds: the B-chain alpha-helix contacts the L1 beta-helix of the insulin receptor.
    Huang K; Xu B; Hu SQ; Chu YC; Hua QX; Qu Y; Li B; Wang S; Wang RY; Nakagawa SH; Theede AM; Whittaker J; De Meyts P; Katsoyannis PG; Weiss MA
    J Mol Biol; 2004 Aug; 341(2):529-50. PubMed ID: 15276842
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The bioactivity of insulin analogues from in vitro receptor binding to in vivo glucose uptake.
    Drejer K
    Diabetes Metab Rev; 1992 Oct; 8(3):259-85. PubMed ID: 1338040
    [No Abstract]   [Full Text] [Related]  

  • 18. Nonlocal structural perturbations in a mutant human insulin: sequential resonance assignment and 13C-isotope-aided 2D-NMR studies of [PheB24-->Gly]insulin with implications for receptor recognition.
    Hua QX; Shoelson SE; Weiss MA
    Biochemistry; 1992 Dec; 31(47):11940-51. PubMed ID: 1445924
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evolution of the insulin molecule: insights into structure-activity and phylogenetic relationships.
    Conlon JM
    Peptides; 2001 Jul; 22(7):1183-93. PubMed ID: 11445250
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structure-function relationships of des-(B26-B30)-insulin.
    Spoden M; Gattner HG; Zahn H; Brandenburg D
    Int J Pept Protein Res; 1995; 46(3-4):221-7. PubMed ID: 8537175
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.