BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 12186723)

  • 21. Airflow, transport and regional deposition of aerosol particles during chronic bronchitis of human central airways.
    Farkhadnia F; Gorji TB; Gorji-Bandpy M
    Australas Phys Eng Sci Med; 2016 Mar; 39(1):43-58. PubMed ID: 26541595
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Modeling airflow and particle transport/deposition in pulmonary airways.
    Kleinstreuer C; Zhang Z; Li Z
    Respir Physiol Neurobiol; 2008 Nov; 163(1-3):128-38. PubMed ID: 18674643
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Anatomically based three-dimensional model of airways to simulate flow and particle transport using computational fluid dynamics.
    van Ertbruggen C; Hirsch C; Paiva M
    J Appl Physiol (1985); 2005 Mar; 98(3):970-80. PubMed ID: 15501925
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Airflow and nanoparticle deposition in a 16-generation tracheobronchial airway model.
    Zhang Z; Kleinstreuer C; Kim CS
    Ann Biomed Eng; 2008 Dec; 36(12):2095-110. PubMed ID: 18850271
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Particle size-dependent total mass deposition in lungs determines inhalation toxicity of cadmium chloride aerosols in rats. Application of a multiple path dosimetry model.
    Cassee FR; Muijser H; Duistermaat E; Freijer JJ; Geerse KB; Marijnissen JC; Arts JH
    Arch Toxicol; 2002 Jun; 76(5-6):277-86. PubMed ID: 12107645
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effects of curved inlet tubes on air flow and particle deposition in bifurcating lung models.
    Zhang Z; Kleinstreuer C; Kim CS
    J Biomech; 2001 May; 34(5):659-69. PubMed ID: 11311707
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The effects of simulated airway diseases and affected flow distributions on aerosol deposition.
    Apiou-Sbirlea G; Katz IM; Martonen TB
    Respir Care; 2010 Jun; 55(6):707-18. PubMed ID: 20507653
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Simulation of deposition and clearance of inhaled particles in central human airways.
    Balásházy I; Farkas A; Szöke I; Hofmann W; Sturm R
    Radiat Prot Dosimetry; 2003; 105(1-4):129-32. PubMed ID: 14526942
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Pediatric in vitro and in silico models of deposition via oral and nasal inhalation.
    Carrigy NB; Ruzycki CA; Golshahi L; Finlay WH
    J Aerosol Med Pulm Drug Deliv; 2014 Jun; 27(3):149-69. PubMed ID: 24870701
    [TBL] [Abstract][Full Text] [Related]  

  • 30. CFD simulation of aerosol deposition in an anatomically based human large-medium airway model.
    Ma B; Lutchen KR
    Ann Biomed Eng; 2009 Feb; 37(2):271-85. PubMed ID: 19082892
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Determining the basic characteristics of aerosols suitable for studies of deposition in the respiratory tract.
    Legáth L; Naus A; Halík J
    J Hyg Epidemiol Microbiol Immunol; 1988; 32(3):287-97. PubMed ID: 3198910
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Transport and deposition of micro-aerosols in realistic and simplified models of the oral airway.
    Xi J; Longest PW
    Ann Biomed Eng; 2007 Apr; 35(4):560-81. PubMed ID: 17237991
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Computational analysis of flow structure and particle deposition in a single asthmatic human airway bifurcation.
    Zhang H; Papadakis G
    J Biomech; 2010 Sep; 43(13):2453-9. PubMed ID: 20646710
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effects of oral airway geometry characteristics on the diffusional deposition of inhaled nanoparticles.
    Xi J; Longest PW
    J Biomech Eng; 2008 Feb; 130(1):011008. PubMed ID: 18298184
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Mechanims of aerosol particle deposition in the Oro-pharynx under non-steady airflow.
    Sosnowski TR; Moskal A; Gradon L
    Ann Occup Hyg; 2007 Jan; 51(1):19-25. PubMed ID: 17041242
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Mice-to-men comparison of inhaled drug-aerosol deposition and clearance.
    Kolanjiyil AV; Kleinstreuer C; Kleinstreuer NC; Pham W; Sadikot RT
    Respir Physiol Neurobiol; 2019 Feb; 260():82-94. PubMed ID: 30445230
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A theory of predicting respiratory tract deposition of inhaled particles in man.
    Yu CP; Taulbee DB
    Inhaled Part; 1975 Sep; 4 Pt 1():35-47. PubMed ID: 1236168
    [TBL] [Abstract][Full Text] [Related]  

  • 38. CFD as a tool in risk assessment of inhaled radon progenies.
    Farkas A; Hofmann W; Balásházy I; Szoke I
    Radiat Prot Dosimetry; 2006; 122(1-4):537-9. PubMed ID: 17132667
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effects of the laryngeal jet on nano- and microparticle transport and deposition in an approximate model of the upper tracheobronchial airways.
    Xi J; Longest PW; Martonen TB
    J Appl Physiol (1985); 2008 Jun; 104(6):1761-77. PubMed ID: 18388247
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Simulation of turbulent airflow using a CT based upper airway model of a racehorse.
    Rakesh V; Datta AK; Ducharme NG; Pease AP
    J Biomech Eng; 2008 Jun; 130(3):031011. PubMed ID: 18532860
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.