These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

72 related articles for article (PubMed ID: 12186726)

  • 1. A visco-hyperelastic model with damage for the knee ligaments under dynamic constraints.
    Arnoux PJ; Chabrand P; Jean M; Bonnoit J
    Comput Methods Biomech Biomed Engin; 2002 Apr; 5(2):167-74. PubMed ID: 12186726
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A visco-hyperelastic-damage constitutive model for the analysis of the biomechanical response of the periodontal ligament.
    Natali AN; Carniel EL; Pavan PG; Sander FG; Dorow C; Geiger M
    J Biomech Eng; 2008 Jun; 130(3):031004. PubMed ID: 18532853
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quasi-linear viscoelastic characterization of human hip ligaments.
    Kemper AR; McNally C; Smith B; Duma SM
    Biomed Sci Instrum; 2007; 43():324-9. PubMed ID: 17487102
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A global verification study of a quasi-static knee model with multi-bundle ligaments.
    Mommersteeg TJ; Huiskes R; Blankevoort L; Kooloos JG; Kauer JM; Maathuis PG
    J Biomech; 1996 Dec; 29(12):1659-64. PubMed ID: 8945669
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nonlinear viscoelastic behavior of human knee ligaments subjected to complex loading histories.
    van Dommelen JA; Jolandan MM; Ivarsson BJ; Millington SA; Raut M; Kerrigan JR; Crandall JR; Diduch DR
    Ann Biomed Eng; 2006 Jun; 34(6):1008-18. PubMed ID: 16783656
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Injury tolerance and moment response of the knee joint to combined valgus bending and shear loading.
    Bose D; Bhalla KS; Untaroiu CD; Ivarsson BJ; Crandall JR; Hurwitz S
    J Biomech Eng; 2008 Jun; 130(3):031008. PubMed ID: 18532857
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Computational modeling to predict mechanical function of joints: application to the lower leg with simulation of two cadaver studies.
    Liacouras PC; Wayne JS
    J Biomech Eng; 2007 Dec; 129(6):811-17. PubMed ID: 18067384
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [The cruciate ligaments as the major mechanism of control of the movement of the knee joint].
    Börner M; Huber H; Mattheck C
    Z Orthop Ihre Grenzgeb; 1988 Dec; 126(6):617-24. PubMed ID: 3245275
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development of an accurate three-dimensional finite element knee model.
    Penrose JM; Holt GM; Beaugonin M; Hose DR
    Comput Methods Biomech Biomed Engin; 2002 Aug; 5(4):291-300. PubMed ID: 12186708
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Viscoelastic and failure properties of spine ligament collagen fascicles.
    Lucas SR; Bass CR; Crandall JR; Kent RW; Shen FH; Salzar RS
    Biomech Model Mechanobiol; 2009 Dec; 8(6):487-98. PubMed ID: 19308471
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Application of nonlinear viscoelastic models to describe ligament behavior.
    Provenzano PP; Lakes RS; Corr DT; Vanderby R
    Biomech Model Mechanobiol; 2002 Jun; 1(1):45-57. PubMed ID: 14586706
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Investigation of the biomechanical behaviour of hindfoot ligaments.
    Forestiero A; Carniel EL; Venturato C; Natali AN
    Proc Inst Mech Eng H; 2013 Jun; 227(6):683-92. PubMed ID: 23636750
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Constitutive laws and failure models for compact bones subjected to dynamic loading.
    Pithioux M; Chabrand P; Jean M
    Comput Methods Biomech Biomed Engin; 2002 Oct; 5(5):351-9. PubMed ID: 12745432
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A visco-hyperelastic model for skeletal muscle tissue under high strain rates.
    Lu YT; Zhu HX; Richmond S; Middleton J
    J Biomech; 2010 Sep; 43(13):2629-32. PubMed ID: 20566197
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A constitutive model of the posterior cruciate ligament.
    Limbert G; Middleton J
    Med Eng Phys; 2006 Mar; 28(2):99-113. PubMed ID: 15919227
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Forward-dynamics simulation of anterior cruciate ligament forces developed during isokinetic dynamometry.
    Serpas F; Yanagawa T; Pandy M
    Comput Methods Biomech Biomed Engin; 2002 Feb; 5(1):33-43. PubMed ID: 12186732
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Parameter optimization for the visco-hyperelastic constitutive model of tendon using FEM.
    Tang CY; Ng GY; Wang ZW; Tsui CP; Zhang G
    Biomed Mater Eng; 2011; 21(1):9-24. PubMed ID: 21537060
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Viscoelastic constitutive law in large deformations: application to human knee ligaments and tendons.
    Pioletti DP; Rakotomanana LR; Benvenuti JF; Leyvraz PF
    J Biomech; 1998 Aug; 31(8):753-7. PubMed ID: 9796676
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Flexural and creep properties of human jaw compact bone for FEA studies.
    Vitins V; Dobelis M; Middleton J; Limbert G; Knets I
    Comput Methods Biomech Biomed Engin; 2003; 6(5-6):299-303. PubMed ID: 14675950
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A visco-hyperelastic constitutive model for human spine ligaments.
    Jiang Y; Wang Y; Peng X
    Cell Biochem Biophys; 2015 Mar; 71(2):1147-56. PubMed ID: 25347987
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.