These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

77 related articles for article (PubMed ID: 12186731)

  • 1. A voxel-based formulation for contact finite element analysis.
    Grosland NM; Brown TD
    Comput Methods Biomech Biomed Engin; 2002 Feb; 5(1):21-32. PubMed ID: 12186731
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Prediction of strength and strain of the proximal femur by a CT-based finite element method.
    Bessho M; Ohnishi I; Matsuyama J; Matsumoto T; Imai K; Nakamura K
    J Biomech; 2007; 40(8):1745-53. PubMed ID: 17034798
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Automated finite-element analysis for deformable registration of prostate images.
    Crouch JR; Pizer SM; Chaney EL; Hu YC; Mageras GS; Zaider M
    IEEE Trans Med Imaging; 2007 Oct; 26(10):1379-90. PubMed ID: 17948728
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Finite-element modeling of bones from CT data: sensitivity to geometry and material uncertainties.
    Taddei F; Martelli S; Reggiani B; Cristofolini L; Viceconti M
    IEEE Trans Biomed Eng; 2006 Nov; 53(11):2194-200. PubMed ID: 17073324
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Assessment of the effect of mesh density on the material property discretisation within QCT based FE models: a practical example using the implanted proximal tibia.
    Perillo-Marcone A; Alonso-Vazquez A; Taylor M
    Comput Methods Biomech Biomed Engin; 2003 Feb; 6(1):17-26. PubMed ID: 12623434
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Finite element models predict cancellous apparent modulus when tissue modulus is scaled from specimen CT-attenuation.
    Bourne BC; van der Meulen MC
    J Biomech; 2004 May; 37(5):613-21. PubMed ID: 15046990
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A three-dimensional digital image correlation technique for strain measurements in microstructures.
    Verhulp E; van Rietbergen B; Huiskes R
    J Biomech; 2004 Sep; 37(9):1313-20. PubMed ID: 15275838
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Validation of finite element models of liver tissue using micro-CT.
    Shi H; Farag AA; Fahmi R; Chen D
    IEEE Trans Biomed Eng; 2008 Mar; 55(3):978-84. PubMed ID: 18334389
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Three dimensional stereolithography models of cancellous bone structures from muCT data: testing and validation of finite element results.
    Dobson CA; Sisias G; Phillips R; Fagan MJ; Langton CM
    Proc Inst Mech Eng H; 2006 Apr; 220(3):481-4. PubMed ID: 16808081
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Customization of a generic 3D model of the distal femur using diagnostic radiographs.
    Schmutz B; Reynolds KJ; Slavotinek JP
    J Med Eng Technol; 2008; 32(2):156-61. PubMed ID: 18297506
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A convenient scheme for coupling a finite element curvilinear mesh to a finite element voxel mesh: application to the heart.
    Hopenfeld B
    Biomed Eng Online; 2006 Nov; 5():60. PubMed ID: 17112373
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Real-time finite element modeling for surgery simulation: an application to virtual suturing.
    Berkley J; Turkiyyah G; Berg D; Ganter M; Weghorst S
    IEEE Trans Vis Comput Graph; 2004; 10(3):314-25. PubMed ID: 18579962
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The material mapping strategy influences the accuracy of CT-based finite element models of bones: an evaluation against experimental measurements.
    Taddei F; Schileo E; Helgason B; Cristofolini L; Viceconti M
    Med Eng Phys; 2007 Nov; 29(9):973-9. PubMed ID: 17169598
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A penetration-based finite element method for hyperelastic 3D biphasic tissues in contact: Part 1--Derivation of contact boundary conditions.
    Un K; Spilker RL
    J Biomech Eng; 2006 Feb; 128(1):124-30. PubMed ID: 16532625
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Anatomical evaluation and stress distribution of intact canine femur.
    Verim O; Tasgetiren S; Er MS; Ozdemir V; Yuran AF
    Int J Med Robot; 2013 Mar; 9(1):103-8. PubMed ID: 22987569
    [TBL] [Abstract][Full Text] [Related]  

  • 16. From high-resolution CT data to finite element models: development of an integrated modular framework.
    Pahr DH; Zysset PK
    Comput Methods Biomech Biomed Engin; 2009 Feb; 12(1):45-57. PubMed ID: 18839383
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phase-field boundary conditions for the voxel finite cell method: Surface-free stress analysis of CT-based bone structures.
    Nguyen L; Stoter S; Baum T; Kirschke J; Ruess M; Yosibash Z; Schillinger D
    Int J Numer Method Biomed Eng; 2017 Dec; 33(12):. PubMed ID: 28294574
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Numerical simulations of the 3D virtual model of the human hip joint, using finite element method.
    Grecu D; Pucalev I; Negru M; Tarniţă DN; Ionovici N; Diţă R
    Rom J Morphol Embryol; 2010; 51(1):151-5. PubMed ID: 20191136
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Compensating for intraoperative soft-tissue deformations using incomplete surface data and finite elements.
    Cash DM; Miga MI; Sinha TK; Galloway RL; Chapman WC
    IEEE Trans Med Imaging; 2005 Nov; 24(11):1479-91. PubMed ID: 16279084
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparative evaluation on three-dimensional finite element models of the temporomandibular joint.
    Liu Z; Fan Y; Qian Y
    Clin Biomech (Bristol, Avon); 2008; 23 Suppl 1():S53-8. PubMed ID: 18282646
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.