These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 12186735)

  • 41. Vertical torque allows recording of anticipatory postural adjustments associated with slow, arm-raising movements.
    Bleuse S; Cassim F; Blatt JL; Defebvre L; Derambure P; Guieu JD
    Clin Biomech (Bristol); 2005 Aug; 20(7):693-9. PubMed ID: 15921833
    [TBL] [Abstract][Full Text] [Related]  

  • 42. A preliminary study into the effects of pelvic rotations on upper body lateral translation.
    Pennycott A; Wyss D; Vallery H; Riener R
    IEEE Int Conf Rehabil Robot; 2013 Jun; 2013():6650490. PubMed ID: 24187307
    [TBL] [Abstract][Full Text] [Related]  

  • 43. On modeling center of foot pressure distortion through a medium.
    Betker AL; Moussavi ZM; Szturm T
    IEEE Trans Biomed Eng; 2005 Mar; 52(3):345-52. PubMed ID: 15759564
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Robot-assisted walking with the Lokomat: the influence of different levels of guidance force on thorax and pelvis kinematics.
    Swinnen E; Baeyens JP; Knaepen K; Michielsen M; Clijsen R; Beckwée D; Kerckhofs E
    Clin Biomech (Bristol); 2015 Mar; 30(3):254-9. PubMed ID: 25662678
    [TBL] [Abstract][Full Text] [Related]  

  • 45. An adaptive system identification model of the biomechanical response of the human trunk during sudden loading.
    Lawrence BM; Buckner GD; Mirka GA
    J Biomech Eng; 2006 Apr; 128(2):235-41. PubMed ID: 16524336
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Musculature and biomechanics of the trunk in the maintenance of upright posture.
    Preuss R; Fung J
    J Electromyogr Kinesiol; 2008 Oct; 18(5):815-28. PubMed ID: 17449280
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Biomechanical mechanism for transitions in phase and frequency of arm and leg swing during walking.
    Kubo M; Wagenaar RC; Saltzman E; Holt KG
    Biol Cybern; 2004 Aug; 91(2):91-8. PubMed ID: 15351887
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Low impact weight-bearing exercise in an upright posture achieves greater lumbopelvic stability than overground walking.
    Gibbon KC; Debuse D; Caplan N
    J Bodyw Mov Ther; 2013 Oct; 17(4):462-8. PubMed ID: 24139004
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Neural-mechanical feedback control scheme generates physiological ankle torque fluctuation during quiet stance.
    Vette AH; Masani K; Nakazawa K; Popovic MR
    IEEE Trans Neural Syst Rehabil Eng; 2010 Feb; 18(1):86-95. PubMed ID: 20071280
    [TBL] [Abstract][Full Text] [Related]  

  • 50. An upper-body can improve the stability and efficiency of passive dynamic walking.
    Chyou T; Liddell GF; Paulin MG
    J Theor Biol; 2011 Sep; 285(1):126-35. PubMed ID: 21740916
    [TBL] [Abstract][Full Text] [Related]  

  • 51. A structurally optimal control model for predicting and analyzing human postural coordination.
    Bonnet V; Ramdani S; Fraisse P; Ramdani N; Lagarde J; Bardy BG
    J Biomech; 2011 Jul; 44(11):2123-8. PubMed ID: 21700288
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Robust hopping based on virtual pendulum posture control.
    Sharbafi MA; Maufroy C; Ahmadabadi MN; Yazdanpanah MJ; Seyfarth A
    Bioinspir Biomim; 2013 Sep; 8(3):036002. PubMed ID: 23735558
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Force direction pattern stabilizes sagittal plane mechanics of human walking.
    Gruben KG; Boehm WL
    Hum Mov Sci; 2012 Jun; 31(3):649-59. PubMed ID: 21871681
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Analysis of coordination between thoracic and pelvic kinematic movements during gait in adolescents with idiopathic scoliosis.
    Park HJ; Sim T; Suh SW; Yang JH; Koo H; Mun JH
    Eur Spine J; 2016 Feb; 25(2):385-93. PubMed ID: 25893334
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Computation of a stabilizing set of feedback matrices of a large-scale nonlinear musculoskeletal dynamic model.
    Dhaher YY
    Comput Methods Biomech Biomed Engin; 2001 Feb; 4(2):165-87. PubMed ID: 11264866
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Necessary condition for forward progression in ballistic walking.
    Kagawa T; Uno Y
    Hum Mov Sci; 2010 Dec; 29(6):964-76. PubMed ID: 20655121
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Thorax and pelvis kinematics during walking, a comparison between children with and without cerebral palsy: A systematic review.
    Swinnen E; Goten LV; De Koster B; Degelaen M
    NeuroRehabilitation; 2016; 38(2):129-46. PubMed ID: 26923354
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Rotational and translational movement features of the pelvis and thorax during adult human locomotion.
    Stokes VP; Andersson C; Forssberg H
    J Biomech; 1989; 22(1):43-50. PubMed ID: 2914971
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Thorax and pelvis kinematics change during sustained cycling.
    Sayers MG; Tweddle AL
    Int J Sports Med; 2012 Apr; 33(4):314-9. PubMed ID: 22377949
    [TBL] [Abstract][Full Text] [Related]  

  • 60. A human model for road safety: from geometrical acquisition to model validation with radioss.
    Behr M; Arnoux PJ; Serre T; Bidal S; Kang HS; Thollon L; Cavallero C; Kayvantash K; Brunet C
    Comput Methods Biomech Biomed Engin; 2003 Aug; 6(4):263-73. PubMed ID: 12959760
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.