BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 12186738)

  • 1. Amadori product and age formation during nonenzymatic glycosylation of bovine serum albumin in vitro.
    Sharma SD; Pandey BN; Mishra KP; Sivakami S
    J Biochem Mol Biol Biophys; 2002 Aug; 6(4):233-42. PubMed ID: 12186738
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Kinetics of nonenzymatic glycation of ribonuclease A leading to advanced glycation end products. Paradoxical inhibition by ribose leads to facile isolation of protein intermediate for rapid post-Amadori studies.
    Khalifah RG; Todd P; Booth AA; Yang SX; Mott JD; Hudson BG
    Biochemistry; 1996 Apr; 35(15):4645-54. PubMed ID: 8664253
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Immunoglobulin-G Glycation by Fructose Leads to Structural Perturbations and Drop Off in Free Lysine and Arginine Residues.
    Faisal M; Alatar AA; Ahmad S
    Protein Pept Lett; 2017; 24(3):241-244. PubMed ID: 28124608
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Kinetics of advanced glycation end products formation on bovine serum albumin with various reducing sugars and dicarbonyl compounds in equimolar ratios.
    Luers L; Rysiewski K; Dumpitak C; Birkmann E
    Rejuvenation Res; 2012 Apr; 15(2):201-5. PubMed ID: 22533432
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Advanced glycation end product (AGE): characterization of the products from the reaction between D-glucose and serum albumin.
    Wu JT; Tu MC; Zhung P
    J Clin Lab Anal; 1996; 10(1):21-34. PubMed ID: 8926563
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Formation of reactive intermediates from Amadori compounds under physiological conditions.
    Zyzak DV; Richardson JM; Thorpe SR; Baynes JW
    Arch Biochem Biophys; 1995 Jan; 316(1):547-54. PubMed ID: 7840665
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reactivities of D-glucose and D-fructose during glycation of bovine serum albumin.
    Yeboah FK; Alli I; Yaylayan VA
    J Agric Food Chem; 1999 Aug; 47(8):3164-72. PubMed ID: 10552625
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Thermal glycation of proteins by D-glucose and D-fructose.
    Kańska U; Boratyński J
    Arch Immunol Ther Exp (Warsz); 2002; 50(1):61-6. PubMed ID: 11916310
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Site specificity of glycation and carboxymethylation of bovine serum albumin by fructose.
    Hinton DJ; Ames JM
    Amino Acids; 2006 Jun; 30(4):425-34. PubMed ID: 16583308
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Study of degradation pathways of Amadori compounds obtained by glycation of opioid pentapeptide and related smaller fragments: stability, reactions, and spectroscopic properties.
    Jakas A; Horvat S
    Biopolymers; 2003 Aug; 69(4):421-31. PubMed ID: 12879488
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In vitro kinetic studies of formation of antigenic advanced glycation end products (AGEs). Novel inhibition of post-Amadori glycation pathways.
    Booth AA; Khalifah RG; Todd P; Hudson BG
    J Biol Chem; 1997 Feb; 272(9):5430-7. PubMed ID: 9038143
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The multiple Maillard reactions of ribose and deoxyribose sugars and sugar phosphates.
    Munanairi A; O'Banion SK; Gamble R; Breuer E; Harris AW; Sandwick RK
    Carbohydr Res; 2007 Dec; 342(17):2575-92. PubMed ID: 17850774
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Glycation mediated lens crystallin aggregation and cross-linking by various sugars and sugar phosphates in vitro.
    Swamy MS; Tsai C; Abraham A; Abraham EC
    Exp Eye Res; 1993 Feb; 56(2):177-85. PubMed ID: 8462651
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fragmentation behavior of glycated peptides derived from D-glucose, D-fructose and D-ribose in tandem mass spectrometry.
    Frolov A; Hoffmann P; Hoffmann R
    J Mass Spectrom; 2006 Nov; 41(11):1459-69. PubMed ID: 17063450
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Formation of the molten globule-like state during prolonged glycation of human serum albumin.
    Sattarahmady N; Moosavi-Movahedi AA; Ahmad F; Hakimelahi GH; Habibi-Rezaei M; Saboury AA; Sheibani N
    Biochim Biophys Acta; 2007 Jun; 1770(6):933-42. PubMed ID: 17368729
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Glycation of a lysine-containing tetrapeptide by D-glucose and D-fructose--influence of different reaction conditions on the formation of Amadori/Heyns products.
    Jakas A; Katić A; Bionda N; Horvat S
    Carbohydr Res; 2008 Sep; 343(14):2475-80. PubMed ID: 18656854
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of advanced glycation end products for biochemical studies: side chain modifications and fluorescence characteristics.
    Schmitt A; Schmitt J; Münch G; Gasic-Milencovic J
    Anal Biochem; 2005 Mar; 338(2):201-15. PubMed ID: 15745740
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Site-specific synthesis of Amadori-modified peptides on solid phase.
    Frolov A; Singer D; Hoffmann R
    J Pept Sci; 2006 Jun; 12(6):389-95. PubMed ID: 16342332
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of aminoguanidine and copper(II) ions on the formation of advanced glycosylation end products. In vitro study on human serum albumin.
    Jakus V; Bauerová K; Rietbrock N
    Arzneimittelforschung; 2001; 51(4):280-3. PubMed ID: 11367867
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Acid-stable fluorescent advanced glycation end products: vesperlysines A, B, and C are formed as crosslinked products in the Maillard reaction between lysine or proteins with glucose.
    Nakamura K; Nakazawa Y; Ienaga K
    Biochem Biophys Res Commun; 1997 Mar; 232(1):227-30. PubMed ID: 9125137
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.