These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 12186738)

  • 21. Fructose-induced fluorescence generation of reductively methylated glycated bovine serum albumin: evidence for nonenzymatic glycation of Amadori adducts.
    Suárez G; Maturana J; Oronsky AL; Raventós-Suárez C
    Biochim Biophys Acta; 1991 Sep; 1075(1):12-9. PubMed ID: 1892863
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The pyridoxamine action on Amadori compounds: A reexamination of its scavenging capacity and chelating effect.
    Adrover M; Vilanova B; Frau J; Muñoz F; Donoso J
    Bioorg Med Chem; 2008 May; 16(10):5557-69. PubMed ID: 18434162
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Relative quantification of N(epsilon)-(Carboxymethyl)lysine, imidazolone A, and the Amadori product in glycated lysozyme by MALDI-TOF mass spectrometry.
    Kislinger T; Humeny A; Peich CC; Zhang X; Niwa T; Pischetsrieder M; Becker CM
    J Agric Food Chem; 2003 Jan; 51(1):51-7. PubMed ID: 12502384
    [TBL] [Abstract][Full Text] [Related]  

  • 24. 2'-Deoxyribose Mediated Glycation Leads to Alterations in BSA Structure Via Generation of Carbonyl Species.
    Rafi Z; Alouffi S; Khan MS; Ahmad S
    Curr Protein Pept Sci; 2020; 21(9):924-935. PubMed ID: 32053073
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Inhibitory effect of quercetin in the formation of advance glycation end products of human serum albumin: An in vitro and molecular interaction study.
    Alam MM; Ahmad I; Naseem I
    Int J Biol Macromol; 2015 Aug; 79():336-43. PubMed ID: 25982953
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Alginate as an antiglycating agent for human serum albumin.
    Sattarahmady N; Khodagholi F; Moosavi-Movahedi AA; Heli H; Hakimelahi GH
    Int J Biol Macromol; 2007 Jul; 41(2):180-4. PubMed ID: 17350677
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Physicochemical analysis of structural changes in DNA modified with glucose.
    Ashraf JM; Arif B; Dixit K; Moinuddin ; Alam K
    Int J Biol Macromol; 2012 Nov; 51(4):604-11. PubMed ID: 22750126
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Amadorins: novel post-Amadori inhibitors of advanced glycation reactions.
    Khalifah RG; Baynes JW; Hudson BG
    Biochem Biophys Res Commun; 1999 Apr; 257(2):251-8. PubMed ID: 10198198
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Structural modifications of human albumin in diabetes.
    Guerin-Dubourg A; Catan A; Bourdon E; Rondeau P
    Diabetes Metab; 2012 Apr; 38(2):171-8. PubMed ID: 22349032
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Structural and immunological characterization of Amadori-rich human serum albumin: role in diabetes mellitus.
    Arif B; Ashraf JM; Moinuddin ; Ahmad J; Arif Z; Alam K
    Arch Biochem Biophys; 2012 Jun; 522(1):17-25. PubMed ID: 22516656
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Kinetics of glycoxidation of bovine serum albumin by glucose, fructose and ribose and its prevention by food components.
    Sadowska-Bartosz I; Galiniak S; Bartosz G
    Molecules; 2014 Nov; 19(11):18828-49. PubMed ID: 25407721
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The structure of the sugar residue in glycated human serum albumin and its molecular recognition by phenylboronate.
    Rohovec J; Maschmeyer T; Aime S; Peters JA
    Chemistry; 2003 May; 9(10):2193-9. PubMed ID: 12772293
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Ilex paraguariensis extracts inhibit AGE formation more efficiently than green tea.
    Lunceford N; Gugliucci A
    Fitoterapia; 2005 Jul; 76(5):419-27. PubMed ID: 15894431
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Detection of glycation sites in proteins by high-resolution mass spectrometry combined with isotopic labeling.
    Stefanowicz P; Kijewska M; Kluczyk A; Szewczuk Z
    Anal Biochem; 2010 May; 400(2):237-43. PubMed ID: 20156417
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Antiglycating potential of acesulfame potassium: an artificial sweetener.
    Ali A; More TA; Hoonjan AK; Sivakami S
    Appl Physiol Nutr Metab; 2017 Oct; 42(10):1054-1063. PubMed ID: 28618238
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Nonenzymatic glycation of guanosine 5'-triphosphate by glyceraldehyde: an in vitro study of AGE formation.
    Li Y; Dutta U; Cohenford MA; Dain JA
    Bioorg Chem; 2007 Dec; 35(6):417-29. PubMed ID: 17937966
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Advanced glycation of rat liver histone octamers: an in vitro study.
    Gugliucci A
    Biochem Biophys Res Commun; 1994 Aug; 203(1):588-93. PubMed ID: 8074708
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Amount of N(omega)-(Carboxymethyl)arginine generated in collagen and bovine serum albumin during glycation reactions is significantly different.
    Iijima K; Fujimoto D; Irie S
    Connect Tissue Res; 2007; 48(5):271-6. PubMed ID: 17882703
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Pathways of formation of glycoxidation products during glycation of collagen.
    Wells-Knecht MC; Thorpe SR; Baynes JW
    Biochemistry; 1995 Nov; 34(46):15134-41. PubMed ID: 7578127
    [TBL] [Abstract][Full Text] [Related]  

  • 40. ADP-ribose in glycation and glycoxidation reactions.
    Jacobson EL; Cervantes-Laurean D; Jacobson MK
    Adv Exp Med Biol; 1997; 419():371-9. PubMed ID: 9193679
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.