These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
148 related articles for article (PubMed ID: 12186808)
1. Intramural virtual electrodes during defibrillation shocks in left ventricular wall assessed by optical mapping of membrane potential. Fast VG; Sharifov OF; Cheek ER; Newton JC; Ideker RE Circulation; 2002 Aug; 106(8):1007-14. PubMed ID: 12186808 [TBL] [Abstract][Full Text] [Related]
2. Intramural virtual electrodes in ventricular wall: effects on epicardial polarizations. Sharifov OF; Fast VG Circulation; 2004 May; 109(19):2349-56. PubMed ID: 15117837 [TBL] [Abstract][Full Text] [Related]
3. High-resolution optical mapping of intramural virtual electrodes in porcine left ventricular wall. Sharifov OF; Ideker RE; Fast VG Cardiovasc Res; 2004 Dec; 64(3):448-56. PubMed ID: 15537498 [TBL] [Abstract][Full Text] [Related]
4. Role of intramural virtual electrodes in shock-induced activation of left ventricle: optical measurements from the intact epicardial surface. Sharifov OF; Fast VG Heart Rhythm; 2006 Sep; 3(9):1063-73. PubMed ID: 16945803 [TBL] [Abstract][Full Text] [Related]
5. Optical mapping of transmural activation induced by electrical shocks in isolated left ventricular wall wedge preparations. Sharifov OF; Fast VG J Cardiovasc Electrophysiol; 2003 Nov; 14(11):1215-22. PubMed ID: 14678138 [TBL] [Abstract][Full Text] [Related]
6. Do intramural virtual electrodes facilitate successful defibrillation? Model-based analysis of experimental evidence. Hooks DA; Trew ML; Smaill BH; Pullan AJ J Cardiovasc Electrophysiol; 2006 Mar; 17(3):305-11. PubMed ID: 16643406 [TBL] [Abstract][Full Text] [Related]
7. Direct measurements of membrane time constant during defibrillation strength shocks. Sharma V; Qu F; Nikolski VP; DeGroot P; Efimov IR Heart Rhythm; 2007 Apr; 4(4):478-86. PubMed ID: 17399638 [TBL] [Abstract][Full Text] [Related]
8. Nonlinear changes of transmembrane potential caused by defibrillation shocks in strands of cultured myocytes. Fast VG; Rohr S; Ideker RE Am J Physiol Heart Circ Physiol; 2000 Mar; 278(3):H688-97. PubMed ID: 10710335 [TBL] [Abstract][Full Text] [Related]
9. Nonlinear changes of transmembrane potential during defibrillation shocks: role of Ca(2+) current. Cheek ER; Ideker RE; Fast VG Circ Res; 2000 Sep; 87(6):453-9. PubMed ID: 10988236 [TBL] [Abstract][Full Text] [Related]
10. Shock-induced changes of Ca(i)2+ and Vm in myocyte cultures and computer model: Dependence on the timing of shock application. Raman V; Pollard AE; Fast VG Cardiovasc Res; 2007 Jan; 73(1):101-10. PubMed ID: 17134687 [TBL] [Abstract][Full Text] [Related]
11. Role of microscopic tissue structure in shock-induced activation assessed by optical mapping in myocyte cultures. Cheek ER; Sharifov OF; Fast VG J Cardiovasc Electrophysiol; 2005 Sep; 16(9):991-1000. PubMed ID: 16174022 [TBL] [Abstract][Full Text] [Related]
12. Effects of electrical shocks on Cai2+ and Vm in myocyte cultures. Fast VG; Cheek ER; Pollard AE; Ideker RE Circ Res; 2004 Jun; 94(12):1589-97. PubMed ID: 15155528 [TBL] [Abstract][Full Text] [Related]
13. Nonlinear changes of transmembrane potential during electrical shocks: role of membrane electroporation. Cheek ER; Fast VG Circ Res; 2004 Feb; 94(2):208-14. PubMed ID: 14670844 [TBL] [Abstract][Full Text] [Related]
14. Polarity reversal lowers activation time during diastolic field stimulation of the rabbit ventricles: insights into mechanisms. Maleckar MM; Woods MC; Sidorov VY; Holcomb MR; Mashburn DN; Wikswo JP; Trayanova NA Am J Physiol Heart Circ Physiol; 2008 Oct; 295(4):H1626-33. PubMed ID: 18708441 [TBL] [Abstract][Full Text] [Related]
16. Optical measurements of intramural action potentials in isolated porcine hearts using optrodes. Kong W; Fakhari N; Sharifov OF; Ideker RE; Smith WM; Fast VG Heart Rhythm; 2007 Nov; 4(11):1430-6. PubMed ID: 17954403 [TBL] [Abstract][Full Text] [Related]
17. Differences between left and right ventricular chamber geometry affect cardiac vulnerability to electric shocks. RodrÃguez B; Li L; Eason JC; Efimov IR; Trayanova NA Circ Res; 2005 Jul; 97(2):168-75. PubMed ID: 15976315 [TBL] [Abstract][Full Text] [Related]
18. Cardiac potential and potential gradient fields generated by single, combined, and sequential shocks during ventricular defibrillation. Wharton JM; Wolf PD; Smith WM; Chen PS; Frazier DW; Yabe S; Danieley N; Ideker RE Circulation; 1992 Apr; 85(4):1510-23. PubMed ID: 1555291 [TBL] [Abstract][Full Text] [Related]