These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 12186808)

  • 1. Intramural virtual electrodes during defibrillation shocks in left ventricular wall assessed by optical mapping of membrane potential.
    Fast VG; Sharifov OF; Cheek ER; Newton JC; Ideker RE
    Circulation; 2002 Aug; 106(8):1007-14. PubMed ID: 12186808
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Intramural virtual electrodes in ventricular wall: effects on epicardial polarizations.
    Sharifov OF; Fast VG
    Circulation; 2004 May; 109(19):2349-56. PubMed ID: 15117837
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High-resolution optical mapping of intramural virtual electrodes in porcine left ventricular wall.
    Sharifov OF; Ideker RE; Fast VG
    Cardiovasc Res; 2004 Dec; 64(3):448-56. PubMed ID: 15537498
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Role of intramural virtual electrodes in shock-induced activation of left ventricle: optical measurements from the intact epicardial surface.
    Sharifov OF; Fast VG
    Heart Rhythm; 2006 Sep; 3(9):1063-73. PubMed ID: 16945803
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optical mapping of transmural activation induced by electrical shocks in isolated left ventricular wall wedge preparations.
    Sharifov OF; Fast VG
    J Cardiovasc Electrophysiol; 2003 Nov; 14(11):1215-22. PubMed ID: 14678138
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Do intramural virtual electrodes facilitate successful defibrillation? Model-based analysis of experimental evidence.
    Hooks DA; Trew ML; Smaill BH; Pullan AJ
    J Cardiovasc Electrophysiol; 2006 Mar; 17(3):305-11. PubMed ID: 16643406
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Direct measurements of membrane time constant during defibrillation strength shocks.
    Sharma V; Qu F; Nikolski VP; DeGroot P; Efimov IR
    Heart Rhythm; 2007 Apr; 4(4):478-86. PubMed ID: 17399638
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nonlinear changes of transmembrane potential caused by defibrillation shocks in strands of cultured myocytes.
    Fast VG; Rohr S; Ideker RE
    Am J Physiol Heart Circ Physiol; 2000 Mar; 278(3):H688-97. PubMed ID: 10710335
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nonlinear changes of transmembrane potential during defibrillation shocks: role of Ca(2+) current.
    Cheek ER; Ideker RE; Fast VG
    Circ Res; 2000 Sep; 87(6):453-9. PubMed ID: 10988236
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Shock-induced changes of Ca(i)2+ and Vm in myocyte cultures and computer model: Dependence on the timing of shock application.
    Raman V; Pollard AE; Fast VG
    Cardiovasc Res; 2007 Jan; 73(1):101-10. PubMed ID: 17134687
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Role of microscopic tissue structure in shock-induced activation assessed by optical mapping in myocyte cultures.
    Cheek ER; Sharifov OF; Fast VG
    J Cardiovasc Electrophysiol; 2005 Sep; 16(9):991-1000. PubMed ID: 16174022
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of electrical shocks on Cai2+ and Vm in myocyte cultures.
    Fast VG; Cheek ER; Pollard AE; Ideker RE
    Circ Res; 2004 Jun; 94(12):1589-97. PubMed ID: 15155528
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nonlinear changes of transmembrane potential during electrical shocks: role of membrane electroporation.
    Cheek ER; Fast VG
    Circ Res; 2004 Feb; 94(2):208-14. PubMed ID: 14670844
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Polarity reversal lowers activation time during diastolic field stimulation of the rabbit ventricles: insights into mechanisms.
    Maleckar MM; Woods MC; Sidorov VY; Holcomb MR; Mashburn DN; Wikswo JP; Trayanova NA
    Am J Physiol Heart Circ Physiol; 2008 Oct; 295(4):H1626-33. PubMed ID: 18708441
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optical transmembrane potential recordings during intracardiac defibrillation-strength shocks.
    Clark DM; Pollard AE; Ideker RE; Knisley SB
    J Interv Card Electrophysiol; 1999 Jul; 3(2):109-20. PubMed ID: 10387137
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optical measurements of intramural action potentials in isolated porcine hearts using optrodes.
    Kong W; Fakhari N; Sharifov OF; Ideker RE; Smith WM; Fast VG
    Heart Rhythm; 2007 Nov; 4(11):1430-6. PubMed ID: 17954403
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Differences between left and right ventricular chamber geometry affect cardiac vulnerability to electric shocks.
    Rodríguez B; Li L; Eason JC; Efimov IR; Trayanova NA
    Circ Res; 2005 Jul; 97(2):168-75. PubMed ID: 15976315
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cardiac potential and potential gradient fields generated by single, combined, and sequential shocks during ventricular defibrillation.
    Wharton JM; Wolf PD; Smith WM; Chen PS; Frazier DW; Yabe S; Danieley N; Ideker RE
    Circulation; 1992 Apr; 85(4):1510-23. PubMed ID: 1555291
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optical transmembrane potential measurements during defibrillation-strength shocks in perfused rabbit hearts.
    Zhou X; Ideker RE; Blitchington TF; Smith WM; Knisley SB
    Circ Res; 1995 Sep; 77(3):593-602. PubMed ID: 7641329
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The potential gradient field created by epicardial defibrillation electrodes in dogs.
    Chen PS; Wolf PD; Claydon FJ; Dixon EG; Vidaillet HJ; Danieley ND; Pilkington TC; Ideker RE
    Circulation; 1986 Sep; 74(3):626-36. PubMed ID: 3742760
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.