BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 12188187)

  • 1. Recovery of adherent cells after in situ electroporation monitored electrically.
    Wegener J; Keese CR; Giaever I
    Biotechniques; 2002 Aug; 33(2):348, 350, 352 passim. PubMed ID: 12188187
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Impedance analysis of adherent cells after in situ electroporation: non-invasive monitoring during intracellular manipulations.
    Stolwijk JA; Hartmann C; Balani P; Albermann S; Keese CR; Giaever I; Wegener J
    Biosens Bioelectron; 2011 Aug; 26(12):4720-7. PubMed ID: 21684144
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electrode assemblies used for electroporation of cultured cells.
    Raptis L; Firth KL
    Methods Mol Biol; 2008; 423():61-76. PubMed ID: 18370190
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electroporation of adherent cells in situ for the introduction of nonpermeant molecules.
    Raptis LH; Firth KL; Brownell HL; Todd A; Simon WC; Bennett BM; MacKenzie LW; Zannis-Hadjopoulos M
    Methods Mol Biol; 1995; 48():93-113. PubMed ID: 8528412
    [No Abstract]   [Full Text] [Related]  

  • 5. Applications of electroporation of adherent cells in situ, on a partly conductive slide.
    Raptis LH; Brownell HL; Liu SK; Firth KL; MacKenzie LW; Stiles CD; Alberta JA
    Mol Biotechnol; 1995 Oct; 4(2):129-38. PubMed ID: 8556428
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electroporation of adherent cells in situ for the study of signal transduction and gap junctional communication.
    Raptis L; Vultur A; Brownell HL; Tomai E; Anagnostopoulou A; Arulanandam R; Cao J; Firth KL
    Methods Mol Biol; 2008; 423():173-89. PubMed ID: 18370198
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A functional assay for gap junctional examination; electroporation of adherent cells on indium-tin oxide.
    Geletu M; Guy S; Firth K; Raptis L
    J Vis Exp; 2014 Oct; (92):e51710. PubMed ID: 25350637
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Examination of gap junctional, intercellular communication by in situ electroporation on two co-planar indium-tin oxide electrodes.
    Anagnostopoulou A; Cao J; Vultur A; Firth K; Raptis L
    Mol Oncol; 2007 Sep; 1(2):226-31. PubMed ID: 19383296
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of the electrode material on ROS generation and electroporation efficiency in low and high frequency nanosecond pulse range.
    Ruzgys P; Novickij V; Novickij J; Šatkauskas S
    Bioelectrochemistry; 2019 Jun; 127():87-93. PubMed ID: 30769178
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optically transparent polymer devices for in situ assessment of cell electroporation.
    Majhi AK; Thrivikraman G; Basu B; Venkataraman V
    Eur Biophys J; 2015 Feb; 44(1-2):57-67. PubMed ID: 25502470
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Blumlein configuration for high-repetition-rate pulse generation of variable duration and polarity using synchronized switch control.
    Rebersek M; Kranjc M; Pavliha D; Batista-Napotnik T; Vrtacnik D; Amon S; Miklavcic D
    IEEE Trans Biomed Eng; 2009 Nov; 56(11):2642-8. PubMed ID: 19635688
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Impedance analysis of adherent cells after in situ electroporation-mediated delivery of bioactive proteins, DNA and nanoparticles in µL-volumes.
    Stolwijk JA; Wegener J
    Sci Rep; 2020 Dec; 10(1):21331. PubMed ID: 33288771
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electrotransfection of anchorage-dependent mammalian cells.
    Müller KJ; Horbaschek M; Lucas K; Zimmermann U; Sukhorukov VL
    Exp Cell Res; 2003 Aug; 288(2):344-53. PubMed ID: 12915125
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electroporation-induced formation of individual calcium entry sites in the cell body and processes of adherent cells.
    Teruel MN; Meyer T
    Biophys J; 1997 Oct; 73(4):1785-96. PubMed ID: 9336174
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electroporation of cells using EM induction of ac fields by a magnetic stimulator.
    Chen C; Evans JA; Robinson MP; Smye SW; O'Toole P
    Phys Med Biol; 2010 Feb; 55(4):1219-29. PubMed ID: 20124654
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of interphase and interpulse delay in high-frequency irreversible electroporation pulses on cell survival, membrane permeabilization and electrode material release.
    Vižintin A; Vidmar J; Ščančar J; Miklavčič D
    Bioelectrochemistry; 2020 Aug; 134():107523. PubMed ID: 32272337
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Soft electroporation for delivering molecules into tightly adherent mammalian cells through 3D hollow nanoelectrodes.
    Caprettini V; Cerea A; Melle G; Lovato L; Capozza R; Huang JA; Tantussi F; Dipalo M; De Angelis F
    Sci Rep; 2017 Aug; 7(1):8524. PubMed ID: 28819252
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nonlinear current response of micro electroporation and resealing dynamics for human cancer cells.
    He H; Chang DC; Lee YK
    Bioelectrochemistry; 2008 Apr; 72(2):161-8. PubMed ID: 18314398
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Plasma membrane depolarization and permeabilization due to electric pulses in cell lines of different excitability.
    Dermol-Černe J; Miklavčič D; Reberšek M; Mekuč P; Bardet SM; Burke R; Arnaud-Cormos D; Leveque P; O'Connor R
    Bioelectrochemistry; 2018 Aug; 122():103-114. PubMed ID: 29621662
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Conductive nanoparticles improve cell electropermeabilization.
    Ghorbel A; Mir LM; García-Sánchez T
    Nanotechnology; 2019 Dec; 30(49):495101. PubMed ID: 31422958
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.