BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 12188202)

  • 1. A three-dimensional finite element model for arterial clamping.
    Gasser TC; Schulze-Bauer CA; Holzapfel GA
    J Biomech Eng; 2002 Aug; 124(4):355-63. PubMed ID: 12188202
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A layer-specific three-dimensional model for the simulation of balloon angioplasty using magnetic resonance imaging and mechanical testing.
    Holzapfel GA; Stadler M; Schulze-Bauer CA
    Ann Biomed Eng; 2002 Jun; 30(6):753-67. PubMed ID: 12220076
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Arterial clamping: finite element simulation and in vivo validation.
    Famaey N; Sommer G; Vander Sloten J; Holzapfel GA
    J Mech Behav Biomed Mater; 2012 Aug; 12():107-18. PubMed ID: 22659371
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tissue prolapse and stresses in stented coronary arteries: A computer model for multi-layer atherosclerotic plaque.
    Hajiali Z; Dabagh M; Debusschere N; De Beule M; Jalali P
    Comput Biol Med; 2015 Nov; 66():39-46. PubMed ID: 26378501
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An experimental-nonlinear finite element study of a balloon expandable stent inside a realistic stenotic human coronary artery to investigate plaque and arterial wall injury.
    Karimi A; Razaghi R; Shojaei A; Navidbakhsh M
    Biomed Tech (Berl); 2015 Dec; 60(6):593-602. PubMed ID: 25870956
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Three-dimensional finite element analysis of residual stress in arteries.
    Raghavan ML; Trivedi S; Nagaraj A; McPherson DD; Chandran KB
    Ann Biomed Eng; 2004 Feb; 32(2):257-63. PubMed ID: 15008373
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modelling the layer-specific three-dimensional residual stresses in arteries, with an application to the human aorta.
    Holzapfel GA; Ogden RW
    J R Soc Interface; 2010 May; 7(46):787-99. PubMed ID: 19828496
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fluid-structure interaction in aortic cross-clamping: implications for vessel injury.
    Chen HY; Navia JA; Shafique S; Kassab GS
    J Biomech; 2010 Jan; 43(2):221-7. PubMed ID: 19883917
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Numerical modelling of fracture in human arteries.
    Ferrara A; Pandolfi A
    Comput Methods Biomech Biomed Engin; 2008 Oct; 11(5):553-67. PubMed ID: 19230149
    [TBL] [Abstract][Full Text] [Related]  

  • 10. On the sensitivity of wall stresses in diseased arteries to variable material properties.
    Williamson SD; Lam Y; Younis HF; Huang H; Patel S; Kaazempur-Mofrad MR; Kamm RD
    J Biomech Eng; 2003 Feb; 125(1):147-55. PubMed ID: 12661209
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stress softening and permanent deformation in human aortas: Continuum and computational modeling with application to arterial clamping.
    Fereidoonnezhad B; Naghdabadi R; Holzapfel GA
    J Mech Behav Biomed Mater; 2016 Aug; 61():600-616. PubMed ID: 27233103
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Patient-specific stress analyses in the ascending thoracic aorta using a finite-element implementation of the constrained mixture theory.
    Mousavi SJ; Avril S
    Biomech Model Mechanobiol; 2017 Oct; 16(5):1765-1777. PubMed ID: 28536892
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Computational stress-deformation analysis of arterial walls including high-pressure response.
    Holzapfel GA; Gasser TC
    Int J Cardiol; 2007 Mar; 116(1):78-85. PubMed ID: 16822562
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pulsatile flow of non-Newtonian blood fluid inside stenosed arteries: Investigating the effects of viscoelastic and elastic walls, arteriosclerosis, and polycythemia diseases.
    Nejad AA; Talebi Z; Cheraghali D; Shahbani-Zahiri A; Norouzi M
    Comput Methods Programs Biomed; 2018 Feb; 154():109-122. PubMed ID: 29249336
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A three-constituent damage model for arterial clamping in computer-assisted surgery.
    Famaey N; Vander Sloten J; Kuhl E
    Biomech Model Mechanobiol; 2013 Jan; 12(1):123-36. PubMed ID: 22446834
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Finite element analysis of stent implantation in a three-dimensional reconstructed arterial segment.
    Karanasiou GS; Conway C; Papafaklis MI; Lopes AC; Stefanou KA; Athanasiou LS; Michalis LK; Edelman ER; Fotiadis DI
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():5623-6. PubMed ID: 25571270
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Combination of Constitutive Damage Model and Artificial Neural Networks to Characterize the Mechanical Properties of the Healthy and Atherosclerotic Human Coronary Arteries.
    Karimi A; Rahmati SM; Sera T; Kudo S; Navidbakhsh M
    Artif Organs; 2017 Sep; 41(9):E103-E117. PubMed ID: 28150399
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A method for incorporating three-dimensional residual stretches/stresses into patient-specific finite element simulations of arteries.
    Pierce DM; Fastl TE; Rodriguez-Vila B; Verbrugghe P; Fourneau I; Maleux G; Herijgers P; Gomez EJ; Holzapfel GA
    J Mech Behav Biomed Mater; 2015 Jul; 47():147-164. PubMed ID: 25931035
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stainless and shape memory alloy coronary stents: a computational study on the interaction with the vascular wall.
    Migliavacca F; Petrini L; Massarotti P; Schievano S; Auricchio F; Dubini G
    Biomech Model Mechanobiol; 2004 Jun; 2(4):205-17. PubMed ID: 15029511
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A predictive study of the mechanical behaviour of coronary stents by computer modelling.
    Migliavacca F; Petrini L; Montanari V; Quagliana I; Auricchio F; Dubini G
    Med Eng Phys; 2005 Jan; 27(1):13-8. PubMed ID: 15604000
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.