BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 12188209)

  • 1. Origin of the biomechanical properties of wood related to the fine structure of the multi-layered cell wall.
    Yamamoto H; Kojima Y; Okuyama T; Abasolo WP; Gril J
    J Biomech Eng; 2002 Aug; 124(4):432-40. PubMed ID: 12188209
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular deformation mechanisms of the wood cell wall material.
    Jin K; Qin Z; Buehler MJ
    J Mech Behav Biomed Mater; 2015 Feb; 42():198-206. PubMed ID: 25498207
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modelling polymer interactions of the 'molecular Velcro' type in wood under mechanical stress.
    Altaner CM; Jarvis MC
    J Theor Biol; 2008 Aug; 253(3):434-45. PubMed ID: 18485371
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lignification and tension wood.
    Pilate G; Chabbert B; Cathala B; Yoshinaga A; Leplé JC; Laurans F; Lapierre C; Ruel K
    C R Biol; 2004; 327(9-10):889-901. PubMed ID: 15587080
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hygroscopic swelling and shrinkage of latewood cell wall micropillars reveal ultrastructural anisotropy.
    Rafsanjani A; Stiefel M; Jefimovs K; Mokso R; Derome D; Carmeliet J
    J R Soc Interface; 2014 Jun; 11(95):20140126. PubMed ID: 24671938
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Covalent linkages between cellulose and lignin in cell walls of coniferous and nonconiferous woods.
    Jin Z; Katsumata KS; Lam TB; Iiyama K
    Biopolymers; 2006 Oct; 83(2):103-10. PubMed ID: 16673388
    [TBL] [Abstract][Full Text] [Related]  

  • 7. TWIG: a model to simulate the gravitropic response of a tree axis in the frame of elasticity and viscoelasticity, at intra-annual time scale.
    Coutand C; Mathias JD; Jeronimidis G; Destrebecq JF
    J Theor Biol; 2011 Mar; 273(1):115-29. PubMed ID: 21187101
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The hierarchical structure and mechanics of plant materials.
    Gibson LJ
    J R Soc Interface; 2012 Nov; 9(76):2749-66. PubMed ID: 22874093
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Contributions of the mechanical properties of major structural polysaccharides to the stiffness of a cell wall network model.
    Yi H; Puri VM
    Am J Bot; 2014 Feb; 101(2):244-54. PubMed ID: 24491345
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural and mechanical roles of wood polymer assemblies in softwood revealed by gradual removal of polysaccharides or lignin.
    Kurei T; Sakai S; Nakaba S; Funada R; Horikawa Y
    Int J Biol Macromol; 2024 Feb; 259(Pt 2):129270. PubMed ID: 38199531
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Water Adsorption in Wood Microfibril-Hemicellulose System: Role of the Crystalline-Amorphous Interface.
    Kulasinski K; Guyer R; Derome D; Carmeliet J
    Biomacromolecules; 2015 Sep; 16(9):2972-8. PubMed ID: 26313656
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Impact of Microfibril Orientations on the Biomechanics of Plant Cell Walls and Tissues.
    Ptashnyk M; Seguin B
    Bull Math Biol; 2016 Nov; 78(11):2135-2164. PubMed ID: 27761699
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A multiscale study on the structural and mechanical properties of the luffa sponge from Luffa cylindrica plant.
    Chen Q; Shi Q; Gorb SN; Li Z
    J Biomech; 2014 Apr; 47(6):1332-9. PubMed ID: 24636532
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tensile and compressive stresses in tracheids are induced by swelling based on geometrical constraints of the wood cell.
    Burgert I; Eder M; Gierlinger N; Fratzl P
    Planta; 2007 Sep; 226(4):981-7. PubMed ID: 17554550
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structure-function relationships in hardwood--insight from micromechanical modelling.
    de Borst K; Bader TK
    J Theor Biol; 2014 Mar; 345():78-91. PubMed ID: 24365634
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cellulose structure and lignin distribution in normal and compression wood of the Maidenhair tree (Ginkgo biloba L.).
    Andersson S; Wang Y; Pönni R; Hänninen T; Mononen M; Ren H; Serimaa R; Saranpää P
    J Integr Plant Biol; 2015 Apr; 57(4):388-95. PubMed ID: 25740619
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantification of the Young's modulus of the primary plant cell wall using Bending-Lab-On-Chip (BLOC).
    Nezhad AS; Naghavi M; Packirisamy M; Bhat R; Geitmann A
    Lab Chip; 2013 Jul; 13(13):2599-608. PubMed ID: 23571308
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanical properties of primary plant cell wall analogues.
    Chanliaud E; Burrows KM; Jeronimidis G; Gidley MJ
    Planta; 2002 Oct; 215(6):989-96. PubMed ID: 12355159
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modelling of the hygroelastic behaviour of normal and compression wood tracheids.
    Joffre T; Neagu RC; Bardage SL; Gamstedt EK
    J Struct Biol; 2014 Jan; 185(1):89-98. PubMed ID: 24184469
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Advanced Molecular Dynamics Model for Investigating Biological-Origin Microfibril Structures.
    Ponnuchamy V; Sandak A; Sandak J
    ACS Omega; 2024 Jun; 9(24):25646-25654. PubMed ID: 38911769
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.