These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 12188214)

  • 1. Multi-axial spine biomechanical testing system with speckle displacement instrumentation.
    Chung SM; Teoh SH; Tsai KT; Sin KK
    J Biomech Eng; 2002 Aug; 124(4):471-7. PubMed ID: 12188214
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Defining the Neutral Zone of sheep intervertebral joints during dynamic motions: an in vitro study.
    Thompson RE; Barker TM; Pearcy MJ
    Clin Biomech (Bristol, Avon); 2003 Feb; 18(2):89-98. PubMed ID: 12550806
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Design and validation of a novel Cartesian biomechanical testing system with coordinated 6DOF real-time load control: application to the lumbar spine (L1-S, L4-L5).
    Kelly BP; Bennett CR
    J Biomech; 2013 Jul; 46(11):1948-54. PubMed ID: 23764173
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural behavior of human lumbar spinal motion segments.
    Gardner-Morse MG; Stokes IA
    J Biomech; 2004 Feb; 37(2):205-12. PubMed ID: 14706323
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Can extra-articular strains be used to measure facet contact forces in the lumbar spine? An in-vitro biomechanical study.
    Zhu QA; Park YB; Sjovold SG; Niosi CA; Wilson DC; Cripton PA; Oxland TR
    Proc Inst Mech Eng H; 2008 Feb; 222(2):171-84. PubMed ID: 18441753
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Constrained testing conditions affect the axial rotation response of lumbar functional spinal units.
    Grassmann S; Oxland TR; Gerich U; Nolte LP
    Spine (Phila Pa 1976); 1998 May; 23(10):1155-62. PubMed ID: 9615368
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of specimen length: are the mechanics of individual motion segments comparable in functional spinal units and multisegment specimens?
    Dickey JP; Kerr DJ
    Med Eng Phys; 2003 Apr; 25(3):221-7. PubMed ID: 12589720
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The stabilizing axial spinal pillar in the lumbar spine.
    Iencean SM
    Spinal Cord; 2002 Apr; 40(4):178-85. PubMed ID: 11965556
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A comparison of the torsional stiffness of the lumbar spine in flexion and extension.
    Garges KJ; Nourbakhsh A; Morris R; Yang J; Mody M; Patterson R
    J Manipulative Physiol Ther; 2008 Oct; 31(8):563-9. PubMed ID: 18984238
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Intervertebral disc degeneration alters lumbar spine segmental stiffness in all modes of loading under a compressive follower load.
    Zirbel SA; Stolworthy DK; Howell LL; Bowden AE
    Spine J; 2013 Sep; 13(9):1134-47. PubMed ID: 23507531
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Analysis of simulated single ligament transection on the mechanical behaviour of a lumbar functional spinal unit.
    Zander T; Rohlmann A; Bergmann G
    Biomed Tech (Berl); 2004; 49(1-2):27-32. PubMed ID: 15032495
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analysis of large compression loads on lumbar spine in flexion and in torsion using a novel wrapping element.
    Shirazi-Adl A
    J Biomech; 2006; 39(2):267-75. PubMed ID: 16321628
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biomechanical effect of constraint in lumbar total disc replacement: a study with finite element analysis.
    Chung SK; Kim YE; Wang KC
    Spine (Phila Pa 1976); 2009 May; 34(12):1281-6. PubMed ID: 19455003
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effect of repeated loading and freeze-thaw cycling on immature bovine thoracic motion segment stiffness.
    Sunni N; Askin GN; Labrom RD; Izatt MT; Pearcy MJ; Adam CJ
    Proc Inst Mech Eng H; 2014 Oct; 228(10):1100-7. PubMed ID: 25406230
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of the effects of bilateral posterior dynamic and rigid fixation devices on the loads in the lumbar spine: a finite element analysis.
    Rohlmann A; Burra NK; Zander T; Bergmann G
    Eur Spine J; 2007 Aug; 16(8):1223-31. PubMed ID: 17206401
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The relation between the instantaneous center of rotation and facet joint forces - A finite element analysis.
    Schmidt H; Heuer F; Claes L; Wilke HJ
    Clin Biomech (Bristol, Avon); 2008 Mar; 23(3):270-8. PubMed ID: 17997207
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biomechanical analysis of cervical spine sagittal stiffness characteristics.
    Küçük H
    Comput Biol Med; 2007 Sep; 37(9):1283-91. PubMed ID: 17207786
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of spacer diameter of the Dynesys dynamic stabilization system on the biomechanics of the lumbar spine: a finite element analysis.
    Shih SL; Chen CS; Lin HM; Huang LY; Liu CL; Huang CH; Cheng CK
    J Spinal Disord Tech; 2012 Jul; 25(5):E140-9. PubMed ID: 22744611
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Motion segment stiffness measured without physiological levels of axial compressive preload underestimates the in vivo values in all six degrees of freedom.
    Gardner-Morse MG; Stokes IA; Churchill D; Badger G
    Stud Health Technol Inform; 2002; 91():167-72. PubMed ID: 15457717
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluation of a robot-assisted testing system for multisegmental spine specimens.
    Schulze M; Hartensuer R; Gehweiler D; Hölscher U; Raschke MJ; Vordemvenne T
    J Biomech; 2012 May; 45(8):1457-62. PubMed ID: 22387121
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.