BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 12188352)

  • 1. Carbon isotope fractionation during permanganate oxidation of chlorinated ethylenes (cDCE, TCE, PCE).
    Poulson SR; Naraoka H
    Environ Sci Technol; 2002 Aug; 36(15):3270-4. PubMed ID: 12188352
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Monitoring oxidation of chlorinated ethenes by permanganate in groundwater using stable isotopes: laboratory and field studies.
    Hunkeler D; Arava R; Parker BL; Cherry JA; Diao X
    Environ Sci Technol; 2003 Feb; 37(4):798-804. PubMed ID: 12636282
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transformation of mackinawite to greigite by trichloroethylene and tetrachloroethylene.
    Lan Y; Elwood Madden AS; Butler EC
    Environ Sci Process Impacts; 2016 Oct; 18(10):1266-1273. PubMed ID: 27711891
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Unintentional contaminant transfer from groundwater to the vadose zone during source zone remediation of volatile organic compounds.
    Chong AD; Mayer KU
    J Contam Hydrol; 2017 Sep; 204():1-10. PubMed ID: 28830695
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chlorine isotope fractionation during reductive dechlorination of chlorinated ethenes by anaerobic bacteria.
    Numata M; Nakamura N; Koshikawa H; Terashima Y
    Environ Sci Technol; 2002 Oct; 36(20):4389-94. PubMed ID: 12387413
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Assessing chlorinated ethene degradation in a large scale contaminant plume by dual carbon-chlorine isotope analysis and quantitative PCR.
    Hunkeler D; Abe Y; Broholm MM; Jeannottat S; Westergaard C; Jacobsen CS; Aravena R; Bjerg PL
    J Contam Hydrol; 2011 Jan; 119(1-4):69-79. PubMed ID: 21030108
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantifying chlorinated ethene degradation during reductive dechlorination at Kelly AFB using stable carbon isotopes.
    Morrill PL; Lacrampe-Couloume G; Slater GF; Sleep BE; Edwards EA; McMaster ML; Major DW; Sherwood Lollar B
    J Contam Hydrol; 2005 Feb; 76(3-4):279-93. PubMed ID: 15683884
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stable carbon isotope fractionation during trichloroethene degradation in magnetite-catalyzed Fenton-like reaction.
    Liu Y; Zhou A; Gan Y; Liu C; Yu T; Li X
    J Contam Hydrol; 2013 Feb; 145():37-43. PubMed ID: 23286906
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Surfactant-enhanced oxidation of trichloroethylene by permanganate--proof of concept.
    Li Z
    Chemosphere; 2004 Jan; 54(3):419-23. PubMed ID: 14575755
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characteristics of permanganate oxidation of TCE at low reagent concentrations.
    Woo NC; Hyun SG; Park WW; Lee ES; Schwartz FW
    Environ Technol; 2009 Dec; 30(13):1337-42. PubMed ID: 20088197
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Variability in carbon isotopic fractionation during biodegradation of chlorinated ethenes: implications for field applications.
    Slater GF; Lollar BS; Sleep BE; Edwards EA
    Environ Sci Technol; 2001 Mar; 35(5):901-7. PubMed ID: 11351533
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development of KMnO(4)-releasing composites for in situ chemical oxidation of TCE-contaminated groundwater.
    Liang SH; Chen KF; Wu CS; Lin YH; Kao CM
    Water Res; 2014 May; 54():149-58. PubMed ID: 24568784
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chlorine isotope effects from isotope ratio mass spectrometry suggest intramolecular C-Cl bond competition in trichloroethene (TCE) reductive dehalogenation.
    Cretnik S; Bernstein A; Shouakar-Stash O; Löffler F; Elsner M
    Molecules; 2014 May; 19(5):6450-73. PubMed ID: 24853618
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stable carbon isotope fractionation during aerobic biodegradation of chlorinated ethenes.
    Chu KH; Mahendra S; Song DL; Conrad ME; Alvarez-Cohen L
    Environ Sci Technol; 2004 Jun; 38(11):3126-30. PubMed ID: 15224745
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Substrate hydrophobicity and cell composition influence the extent of rate limitation and masking of isotope fractionation during microbial reductive dehalogenation of chlorinated ethenes.
    Renpenning J; Rapp I; Nijenhuis I
    Environ Sci Technol; 2015 Apr; 49(7):4293-301. PubMed ID: 25734359
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Laboratory-scale characterization of slow-release permanganate gel (SRP-G) for the in-situ treatment of chlorinated-solvent groundwater plumes.
    Ogundare O; Tick GR; Esfahani MR; Akyol NH; Zhang Y
    Chemosphere; 2024 Jul; 360():142392. PubMed ID: 38777195
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stable carbon isotope evidence for intrinsic bioremediation of tetrachloroethene and trichloroethene at area 6, Dover Air Force Base.
    Sherwood Lollar B; Slater GF; Sleep B; Witt M; Klecka GM; Harkness M; Spivack J
    Environ Sci Technol; 2001 Jan; 35(2):261-9. PubMed ID: 11347596
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Variability in microbial carbon isotope fractionation of tetra- and trichloroethene upon reductive dechlorination.
    Cichocka D; Imfeld G; Richnow HH; Nijenhuis I
    Chemosphere; 2008 Mar; 71(4):639-48. PubMed ID: 18155126
    [TBL] [Abstract][Full Text] [Related]  

  • 19. DFT study of trichloroethene reaction with permanganate in aqueous solution.
    Adamczyk P; Dybala-Defratyka A; Paneth P
    Environ Sci Technol; 2011 Apr; 45(7):3006-11. PubMed ID: 21381718
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stable carbon isotope fractionation of chloroethenes by dehalorespiring isolates.
    Lee PK; Conrad ME; Alvarez-Cohen L
    Environ Sci Technol; 2007 Jun; 41(12):4277-85. PubMed ID: 17626425
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.