BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

236 related articles for article (PubMed ID: 12188357)

  • 1. Indoor hydrogen peroxide derived from ozone/d-limonene reactions.
    Li TH; Turpin BJ; Shields HC; Weschler CJ
    Environ Sci Technol; 2002 Aug; 36(15):3295-302. PubMed ID: 12188357
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Degradation of the adsorbent Tenax TA by nitrogen oxides, ozone, hydrogen peroxide, OH radical, and limonene oxidation products.
    Klenø JG; Wolkoff P; Clausen PA; Wilkins CK; Pedersen T
    Environ Sci Technol; 2002 Oct; 36(19):4121-6. PubMed ID: 12380084
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transient secondary organic aerosol formation from limonene ozonolysis in indoor environments: impacts of air exchange rates and initial concentration ratios.
    Youssefi S; Waring MS
    Environ Sci Technol; 2014 Jul; 48(14):7899-908. PubMed ID: 24940869
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ozone and limonene in indoor air: a source of submicron particle exposure.
    Wainman T; Zhang J; Weschler CJ; Lioy PJ
    Environ Health Perspect; 2000 Dec; 108(12):1139-45. PubMed ID: 11133393
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Degradation of indoor limonene by outdoor ozone: A cascade of secondary organic aerosols.
    Rösch C; Wissenbach DK; Franck U; Wendisch M; Schlink U
    Environ Pollut; 2017 Jul; 226():463-472. PubMed ID: 28456415
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The influence of ventilation on reactions among indoor pollutants: modeling and experimental observations.
    Weschler CJ; Shields HC
    Indoor Air; 2000 Jun; 10(2):92-100. PubMed ID: 11980107
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The lasting effect of limonene-induced particle formation on air quality in a genuine indoor environment.
    Rösch C; Wissenbach DK; von Bergen M; Franck U; Wendisch M; Schlink U
    Environ Sci Pollut Res Int; 2015 Sep; 22(18):14209-19. PubMed ID: 25966888
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A chamber study of secondary organic aerosol formation by limonene ozonolysis.
    Chen X; Hopke PK
    Indoor Air; 2010 Aug; 20(4):320-8. PubMed ID: 20557377
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of ozone-limonene reactions on perceived air quality.
    Tamás G; Weschler CJ; Toftum J; Fanger PO
    Indoor Air; 2006 Jun; 16(3):168-78. PubMed ID: 16683936
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chemical and biological evaluation of a reaction mixture of R-(+)-limonene/ozone: formation of strong airway irritants.
    Clausen PA; Wilkins CK; Wolkoff P; Nielsen GD
    Environ Int; 2001 Jun; 26(7-8):511-22. PubMed ID: 11485219
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Impact of human presence on secondary organic aerosols derived from ozone-initiated chemistry in a simulated office environment.
    Fadeyi MO; Weschler CJ; Tham KW; Wu WY; Sultan ZM
    Environ Sci Technol; 2013 Apr; 47(8):3933-41. PubMed ID: 23488675
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Indoor secondary organic aerosols formation from ozonolysis of monoterpene: An example of d-limonene with ammonia and potential impacts on pulmonary inflammations.
    Niu X; Ho SSH; Ho KF; Huang Y; Cao J; Shen Z; Sun J; Wang X; Wang Y; Lee S; Huang R
    Sci Total Environ; 2017 Feb; 579():212-220. PubMed ID: 27842959
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ozone-initiated reactions with mixtures of volatile organic compounds under simulated indoor conditions.
    Fan Z; Lioy P; Weschler C; Fiedler N; Kipen H; Zhang J
    Environ Sci Technol; 2003 May; 37(9):1811-21. PubMed ID: 12775052
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of an ozone-generating air purifier on indoor secondary particles in three residential dwellings.
    Hubbard HF; Coleman BK; Sarwar G; Corsi RL
    Indoor Air; 2005 Dec; 15(6):432-44. PubMed ID: 16268833
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The health significance of gas- and particle-phase terpene oxidation products: a review.
    Rohr AC
    Environ Int; 2013 Oct; 60():145-62. PubMed ID: 24036325
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modeling the formation of secondary organic aerosol. 1. Application of theoretical principles to measurements obtained in the alpha-pinene/, beta-pinene/, sabinene/, delta3-carene/, and cyclohexane/ozone systems.
    Pankow JF; Seinfeld JH; Asher WE; Erdakos GB
    Environ Sci Technol; 2001 Mar; 35(6):1164-72. PubMed ID: 11347929
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Predicting secondary organic aerosol formation from terpenoid ozonolysis with varying yields in indoor environments.
    Youssefi S; Waring MS
    Indoor Air; 2012 Oct; 22(5):415-26. PubMed ID: 22372506
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ozone in indoor environments: concentration and chemistry.
    Weschler CJ
    Indoor Air; 2000 Dec; 10(4):269-88. PubMed ID: 11089331
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of ozone and radical chemistry on limonene organic aerosol production and thermal characteristics.
    Pathak RK; Salo K; Emanuelsson EU; Cai C; Lutz A; Hallquist AM; Hallquist M
    Environ Sci Technol; 2012 Nov; 46(21):11660-9. PubMed ID: 22985264
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Indoor secondary organic aerosol formation initiated from reactions between ozone and surface-sorbed D-limonene.
    Waring MS; Siegel JA
    Environ Sci Technol; 2013 Jun; 47(12):6341-8. PubMed ID: 23724989
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.