BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 12188371)

  • 1. Comparison between donor substrates for biologically enhanced tetrachloroethene DNAPL dissolution.
    Yang Y; McCarty PL
    Environ Sci Technol; 2002 Aug; 36(15):3400-4. PubMed ID: 12188371
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhanced reductive dechlorination of tetrachloroethene dense nonaqueous phase liquid with EVO and Mg(OH)2.
    Hiortdahl KM; Borden RC
    Environ Sci Technol; 2014; 48(1):624-31. PubMed ID: 24328264
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comment on "Comparison between donor substrates for biologically enhanced tetrachloroethene DNAPL dissolution".
    Lutes CC; Liles DS; Suthersan SS; Lenzo F; Hansen M; Payne FC; Burdick JV; Vance D
    Environ Sci Technol; 2003 Jun; 37(11):2618-9; author reply 2620-1. PubMed ID: 12831052
    [No Abstract]   [Full Text] [Related]  

  • 4. Biologically enhanced mass transfer of tetrachloroethene from DNAPL in source zones: experimental evaluation and influence of pool morphology.
    Glover KC; Munakata-Marr J; Illangasekare TH
    Environ Sci Technol; 2007 Feb; 41(4):1384-9. PubMed ID: 17593746
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effectiveness of nanoscale zero-valent iron for treatment of a PCE-DNAPL source zone.
    Taghavy A; Costanza J; Pennell KD; Abriola LM
    J Contam Hydrol; 2010 Nov; 118(3-4):128-42. PubMed ID: 20888664
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spatial and temporal dynamics of organohalide-respiring bacteria in a heterogeneous PCE-DNAPL source zone.
    Cápiro NL; Löffler FE; Pennell KD
    J Contam Hydrol; 2015 Nov; 182():78-90. PubMed ID: 26348832
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of biomass accumulation on microbially enhanced dissolution of a PCE pool: a numerical simulation.
    Chu M; Kitanidis PK; McCarty PL
    J Contam Hydrol; 2003 Aug; 65(1-2):79-100. PubMed ID: 12855202
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biological enhancement of tetrachloroethene dissolution and associated microbial community changes.
    Sleep BE; Seepersad DJ; Kaiguo MO; Heidorn CM; Hrapovic L; Morrill PL; McMaster ML; Hood ED; Lebron C; Lollar BS; Major DW; Edwards EA
    Environ Sci Technol; 2006 Jun; 40(11):3623-33. PubMed ID: 16786703
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A three-layer diffusion-cell to examine bio-enhanced dissolution of chloroethene dense non-aqueous phase liquid.
    Philips J; Springael D; Smolders E
    Chemosphere; 2011 May; 83(7):991-6. PubMed ID: 21376368
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Simultaneous anaerobic transformation of carbon tetrachloride to carbon dioxide and tetrachloroethene to ethene in a continuous flow column.
    Azizian MF; Semprini L
    J Contam Hydrol; 2017 Aug; 203():93-103. PubMed ID: 28716488
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Simultaneous anaerobic transformation of tetrachloroethene and carbon tetrachloride in a continuous flow column.
    Azizian MF; Semprini L
    J Contam Hydrol; 2016 Jul; 190():58-68. PubMed ID: 27183341
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Natural remobilization of multicomponent DNAPL pools due to dissolution.
    Roy JW; Smith JE; Gillham RW
    J Contam Hydrol; 2002 Dec; 59(3-4):163-86. PubMed ID: 12487412
    [TBL] [Abstract][Full Text] [Related]  

  • 13. PCE dissolution and simultaneous dechlorination by nanoscale zero-valent iron particles in a DNAPL source zone.
    Fagerlund F; Illangasekare TH; Phenrat T; Kim HJ; Lowry GV
    J Contam Hydrol; 2012 Apr; 131(1-4):9-28. PubMed ID: 22326687
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Variations in expression of carbon isotope fractionation of chlorinated ethenes during biologically enhanced PCE dissolution close to a source zone.
    Morrill PL; Sleep BE; Seepersad DJ; McMaster ML; Hood ED; LeBron C; Major DW; Edwards EA; Lollar BS
    J Contam Hydrol; 2009 Nov; 110(1-2):60-71. PubMed ID: 19818530
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spatial and temporal distributions of Geobacter lovleyi and Dehalococcoides spp. during bioenhanced PCE-NAPL dissolution.
    Amos BK; Suchomel EJ; Pennell KD; Löffler FE
    Environ Sci Technol; 2009 Mar; 43(6):1977-85. PubMed ID: 19368201
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dense nonaqueous phase liquid architecture and dissolution in discretely fractured sandstone blocks.
    Schaefer CE; Callaghan AV; King JD; McCray JE
    Environ Sci Technol; 2009 Mar; 43(6):1877-83. PubMed ID: 19368186
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dense Nonaqueous-Phase Liquid Architecture in Fractured Bedrock: Implications for Treatment and Plume Longevity.
    Schaefer CE; White EB; Lavorgna GM; Annable MD
    Environ Sci Technol; 2016 Jan; 50(1):207-13. PubMed ID: 26619000
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microbially enhanced dissolution and reductive dechlorination of PCE by a mixed culture: model validation and sensitivity analysis.
    Chen M; Abriola LM; Amos BK; Suchomel EJ; Pennell KD; Löffler FE; Christ JA
    J Contam Hydrol; 2013 Aug; 151():117-30. PubMed ID: 23774611
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pilot-scale demonstration of surfactant-enhanced PCE solubilization at the Bachman Road site. 1. Site characterization and test design.
    Abriola LM; Drummond CD; Hahn EJ; Hayes KF; Kibbey TC; Lemke LD; Pennell KD; Petrovskis EA; Ramsburg CA; Rathfelder KM
    Environ Sci Technol; 2005 Mar; 39(6):1778-90. PubMed ID: 15819238
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dehalorespiration model that incorporates the self-inhibition and biomass inactivation effects of high tetrachloroethene concentrations.
    Huang D; Becker JG
    Environ Sci Technol; 2011 Feb; 45(3):1093-9. PubMed ID: 21182287
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.