BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 12188371)

  • 21. Experimental evaluation and mathematical modeling of microbially enhanced tetrachloroethene (PCE) dissolution.
    Amos BK; Christ JA; Abriola LM; Pennell KD; Löffler FE
    Environ Sci Technol; 2007 Feb; 41(3):963-70. PubMed ID: 17328210
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effect of source variability and transport processes on carbon isotope ratios of TCE and PCE in two sandy aquifers.
    Hunkeler D; Chollet N; Pittet X; Aravena R; Cherry JA; Parker BL
    J Contam Hydrol; 2004 Oct; 74(1-4):265-82. PubMed ID: 15358496
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Bioaugmentation for treatment of dense non-aqueous phase liquid in fractured sandstone blocks.
    Schaefer CE; Towne RM; Vainberg S; McCray JE; Steffan RJ
    Environ Sci Technol; 2010 Jul; 44(13):4958-64. PubMed ID: 20524648
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Comparison between acetate and hydrogen as electron donors and implications for the reductive dehalogenation of PCE and TCE.
    Lee IS; Bae JH; McCarty PL
    J Contam Hydrol; 2007 Oct; 94(1-2):76-85. PubMed ID: 17610987
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Degradation product partitioning in source zones containing chlorinated ethene dense non-aqueous-phase liquid.
    Ramsburg CA; Thornton CE; Christ JA
    Environ Sci Technol; 2010 Dec; 44(23):9105-11. PubMed ID: 21053958
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Enhanced reductive dechlorination of PCE DNAPL with TBOS as a slow-release electron donor.
    Yu S; Semprini L
    J Hazard Mater; 2009 Aug; 167(1-3):97-104. PubMed ID: 19179006
    [TBL] [Abstract][Full Text] [Related]  

  • 27. PCE DNAPL degradation using ferrous iron solid mixture (ISM).
    Lee HK; Do SH; Batchelor B; Jo YH; Kong SH
    Chemosphere; 2009 Aug; 76(8):1082-7. PubMed ID: 19439340
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The significance of heterogeneity on mass flux from DNAPL source zones: an experimental investigation.
    Page JW; Soga K; Illangasekare T
    J Contam Hydrol; 2007 Dec; 94(3-4):215-34. PubMed ID: 17706832
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Bioenhanced dissolution of dense non-aqueous phase of trichloroethylene as affected by iron reducing conditions: model systems and environmental samples.
    Paul L; Smolders E
    Chemosphere; 2015 Jan; 119():1113-1119. PubMed ID: 25460750
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Modeling the effects of microbial competition and hydrodynamics on the dissolution and detoxification of dense nonaqueous phase liquid contaminants.
    Becker JG; Seagren EA
    Environ Sci Technol; 2009 Feb; 43(3):870-7. PubMed ID: 19245029
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A laboratory study of surfactant flushing of DNAPL in the presence of macroemulsion.
    Gupta DK; Mohanty KK
    Environ Sci Technol; 2001 Jul; 35(13):2836-43. PubMed ID: 11452618
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Use of emulsified vegetable oil to support bioremediation of TCE DNAPL in soil columns.
    Harkness M; Fisher A
    J Contam Hydrol; 2013 Aug; 151():16-33. PubMed ID: 23697993
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Electromagnetic induction of nanoscale zerovalent iron particles accelerates the degradation of chlorinated dense non-aqueous phase liquid: Proof of concept.
    Phenrat T; Kumloet I
    Water Res; 2016 Dec; 107():19-28. PubMed ID: 27788401
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Evaluation of polyethylene hollow-fiber membranes for hydrogen delivery to support reductive dechlorination in a soil column.
    Ma X; Novak PJ; Clapp LW; Semmens MJ; Hozalski RM
    Water Res; 2003 Jul; 37(12):2905-18. PubMed ID: 12767293
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Development of a biobarrier for the remediation of PCE-contaminated aquifer.
    Kao CM; Chen SC; Liu JK
    Chemosphere; 2001 Jun; 43(8):1071-8. PubMed ID: 11368222
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Relative contribution of DNAPL dissolution and matrix diffusion to the long-term persistence of chlorinated solvent source zones.
    Seyedabbasi MA; Newell CJ; Adamson DT; Sale TC
    J Contam Hydrol; 2012 Jun; 134-135():69-81. PubMed ID: 22591740
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Biologically-enhanced removal of PCE from NAPL source zones.
    Cope N; Hughes JB
    Environ Sci Technol; 2001 May; 35(10):2014-21. PubMed ID: 11393982
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Architecture, persistence and dissolution of a 20 to 45 year old trichloroethene DNAPL source zone.
    Rivett MO; Dearden RA; Wealthall GP
    J Contam Hydrol; 2014 Dec; 170():95-115. PubMed ID: 25444120
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Pilot-scale demonstration of surfactant-enhanced PCE solubilization at the Bachman Road site. 2. System operation and evaluation.
    Ramsburg CA; Pennell KD; Abriola LM; Daniels G; Drummond CD; Gamache M; Hsu HL; Petrovskis EA; Rathfelder KM; Ryder JL; Yavaraski TP
    Environ Sci Technol; 2005 Mar; 39(6):1791-801. PubMed ID: 15819239
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Refinement of the density-modified displacement method for efficient treatment of tetrachloroethene source zones.
    Ramsburg CA; Pennell KD; Kibbey TC; Hayes KF
    J Contam Hydrol; 2004 Oct; 74(1-4):105-31. PubMed ID: 15358489
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.