BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 12188375)

  • 1. Pesticide adsorption by granular activated carbon adsorbers. 1. Effect of natural organic matter preloading on removal rates and model simplification.
    Matsui Y; Knappe DR; Takagi R
    Environ Sci Technol; 2002 Aug; 36(15):3426-31. PubMed ID: 12188375
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pesticide adsorption by granular activated carbon adsorbers. 2. Effects of pesticide and natural organic matter characteristics on pesticide breakthrough curves.
    Matsui Y; Knappe DR; Iwaki K; Ohira H
    Environ Sci Technol; 2002 Aug; 36(15):3432-8. PubMed ID: 12188376
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of natural organic matter on powdered activated carbon adsorption of trace contaminants: characteristics and mechanism of competitive adsorption.
    Matsui Y; Fukuda Y; Inoue T; Matsushita T
    Water Res; 2003 Nov; 37(18):4413-24. PubMed ID: 14511712
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Three-component competitive adsorption model for fixed-bed and moving-bed granular activated carbon adsorbers. Part I. Model development.
    Schideman LC; Mariñas BJ; Snoeyink VL; Campos C
    Environ Sci Technol; 2006 Nov; 40(21):6805-11. PubMed ID: 17144314
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Application of a three-component competitive adsorption model to evaluate and optimize granular activated carbon systems.
    Schideman LC; Snoeyink VL; Mariñas BJ; Ding L; Campos C
    Water Res; 2007 Aug; 41(15):3289-98. PubMed ID: 17572469
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of natural organic matter adsorption in granular activated carbon adsorbers.
    Velten S; Knappe DR; Traber J; Kaiser HP; von Gunten U; Boller M; Meylan S
    Water Res; 2011 Jul; 45(13):3951-9. PubMed ID: 21605887
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effects of dissolved natural organic matter on the adsorption of synthetic organic chemicals by activated carbons and carbon nanotubes.
    Zhang S; Shao T; Karanfil T
    Water Res; 2011 Jan; 45(3):1378-86. PubMed ID: 21093009
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Removal of a synthetic organic chemical by PAC-UF systems--I: Theory and modeling.
    Matsui Y; Yuasa A; Ariga K
    Water Res; 2001 Feb; 35(2):455-63. PubMed ID: 11228999
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Adsorption of aromatic organic contaminants by graphene nanosheets: comparison with carbon nanotubes and activated carbon.
    Apul OG; Wang Q; Zhou Y; Karanfil T
    Water Res; 2013 Mar; 47(4):1648-54. PubMed ID: 23313232
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Three-component competitive adsorption model for fixed-bed and moving-bed granular activated carbon adsorbers. Part II. Model parameterization and verification.
    Schideman LC; Mariñas BJ; Snoeyink VL; Campos C
    Environ Sci Technol; 2006 Nov; 40(21):6812-7. PubMed ID: 17144315
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Exploring molecular sieve capabilities of activated carbon fibers to reduce the impact of NOM preloading on trichloroethylene adsorption.
    Karanfil T; Dastgheib SA; Mauldin D
    Environ Sci Technol; 2006 Feb; 40(4):1321-7. PubMed ID: 16572792
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Application of the IAS theory combining to a three compartments description of natural organic matter to the adsorption of atrazine or diuron on activated carbon.
    Baudu M; Raveau D; Guibaud G
    Environ Technol; 2004 Jul; 25(7):763-73. PubMed ID: 15346857
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Calcium accumulation on activated carbon deteriorates synthetic organic chemicals adsorption.
    Lee SH; Nishijima W; Lee CH; Okada M
    Water Res; 2003 Nov; 37(19):4631-6. PubMed ID: 14568049
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Displacement effect of NOM on atrazine adsorption by PACs with different pore size distributions.
    Li Q; Snoeyink VL; Campos C; Mariñas BJ
    Environ Sci Technol; 2002 Apr; 36(7):1510-5. PubMed ID: 11999059
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pore blockage effect of NOM on atrazine adsorption kinetics of PAC: the roles of PAC pore size distribution and NOM molecular weight.
    Li Q; Snoeyink VL; Mariñas BJ; Campos C
    Water Res; 2003 Dec; 37(20):4863-72. PubMed ID: 14604632
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Scaling trace organic contaminant adsorption capacity by granular activated carbon.
    Corwin CJ; Summers RS
    Environ Sci Technol; 2010 Jul; 44(14):5403-8. PubMed ID: 20560652
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cyclic process of simazine removal from waters by adsorption on zeolite H-Y and its regeneration by thermal treatment.
    Sannino F; Ruocco S; Marocco A; Esposito S; Pansini M
    J Hazard Mater; 2012 Aug; 229-230():354-60. PubMed ID: 22749123
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Model studies on granular activated carbon adsorption in fixed bed filtration.
    Jusoh AB; Noor MJ; Plow SB
    Water Sci Technol; 2002; 46(9):127-35. PubMed ID: 12448461
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Simulating the performance of fixed-bed granular activated carbon adsorbers: removal of synthetic organic chemicals in the presence of background organic matter.
    Jarvie ME; Hand DW; Bhuvendralingam S; Crittenden JC; Hokanson DR
    Water Res; 2005 Jun; 39(11):2407-21. PubMed ID: 15964606
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pore distribution effect of activated carbon in adsorbing organic micropollutants from natural water.
    Ebie K; Li F; Azuma Y; Yuasa A; Hagishita T
    Water Res; 2001 Jan; 35(1):167-79. PubMed ID: 11257871
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.