BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 12188623)

  • 1. Quantitative model studies on the efficiency of precursors in the formation of cooling-active 1-pyrrolidinyl-2-cyclopenten-1-ones and bitter-tasting cyclopenta-[b]azepin-8(1H)-ones.
    Ottinger H; Hofmann T
    J Agric Food Chem; 2002 Aug; 50(18):5156-61. PubMed ID: 12188623
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of natural "cooling" compounds formed from glucose and l-proline in dark malt by application of taste dilution analysis.
    Ottinger H; Bareth A; Hofmann T
    J Agric Food Chem; 2001 Mar; 49(3):1336-44. PubMed ID: 11312861
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of L-cysteine on the formation of bitter-tasting aminohexose reductones from glucose and L-proline: identification of a novel furo[2,3-b]thiazine.
    Hofmann T
    J Agric Food Chem; 1999 Nov; 47(11):4763-8. PubMed ID: 10552887
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Taste-active maillard reaction products: the "tasty" world of nonvolatile maillard reaction products.
    Hofmann T
    Ann N Y Acad Sci; 2005 Jun; 1043():20-9. PubMed ID: 16037218
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of an intense bitter-tasting 1H,4H-quinolizinium-7-olate by application of the taste dilution analysis, a novel bioassay for the screening and identification of taste-active compounds in foods.
    Frank O; Ottinger H; Hofmann T
    J Agric Food Chem; 2001 Jan; 49(1):231-8. PubMed ID: 11170582
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Systematic studies on structure and physiological activity of cyclic alpha-keto enamines, a novel class of "cooling" compounds.
    Ottinger H; Soldo T; Hofmann T
    J Agric Food Chem; 2001 Nov; 49(11):5383-90. PubMed ID: 11714332
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sensory activity, chemical structure, and synthesis of Maillard generated bitter-tasting 1-oxo-2,3-dihydro-1H-indolizinium-6-olates.
    Frank O; Jezussek M; Hofmann T
    J Agric Food Chem; 2003 Apr; 51(9):2693-9. PubMed ID: 12696959
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Generation and the fate of C2, C3, and C4 reactive fragments formed in Maillard model systems of [13C]glucose and [13C]glycine or proline.
    Yaylayan VA; Keyhani A; Huygues-Despointes A
    Adv Exp Med Biol; 1998; 434():237-44. PubMed ID: 9598203
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Taste modulating N-(1-methyl-4-oxoimidazolidin-2-ylidene) α-amino acids formed from creatinine and reducing carbohydrates.
    Kunert C; Walker A; Hofmann T
    J Agric Food Chem; 2011 Aug; 59(15):8366-74. PubMed ID: 21702476
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Changes of flavor compounds of hydrolyzed chicken bone extracts during Maillard reaction.
    Sun HM; Wang JZ; Zhang CH; Li X; Xu X; Dong XB; Hu L; Li CH
    J Food Sci; 2014 Dec; 79(12):C2415-26. PubMed ID: 25393708
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reinvestigation of the chemical structure of bitter-tasting quinizolate and homoquinizolate and studies on their Maillard-type formation pathways using suitable (13)C-labeling experiments.
    Frank O; Hofmann T
    J Agric Food Chem; 2002 Oct; 50(21):6027-36. PubMed ID: 12358476
    [TBL] [Abstract][Full Text] [Related]  

  • 12. D-Galacturonic acid as a highly reactive compound in nonenzymatic browning. 1. Formation of browning active degradation products.
    Bornik MA; Kroh LW
    J Agric Food Chem; 2013 Apr; 61(14):3494-500. PubMed ID: 23495718
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Taste-Active Maillard Reaction Products in Roasted Garlic (Allium sativum).
    Wakamatsu J; Stark TD; Hofmann T
    J Agric Food Chem; 2016 Jul; 64(29):5845-54. PubMed ID: 27381763
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Glycerol, an underestimated flavor precursor in the Maillard reaction.
    Smarrito-Menozzi C; Matthey-Doret W; Devaud-Goumoens S; Viton F
    J Agric Food Chem; 2013 Oct; 61(43):10225-30. PubMed ID: 23373461
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structure determination and sensory analysis of bitter-tasting 4-vinylcatechol oligomers and their identification in roasted coffee by means of LC-MS/MS.
    Frank O; Blumberg S; Kunert C; Zehentbauer G; Hofmann T
    J Agric Food Chem; 2007 Mar; 55(5):1945-54. PubMed ID: 17269788
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Volatile components formed from reaction of sugar and beta-alanine as a model system of cookie processing.
    Nishibori S; Berhnard RA; Osawa T; Kawakishi S
    Adv Exp Med Biol; 1998; 434():255-67. PubMed ID: 9598205
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Covalent protein adduct formation and protein cross-linking resulting from the maillard reaction between cyclotene and a model food protein.
    Gerrard JA; Fayle SE; Sutton KH
    J Agric Food Chem; 1999 Mar; 47(3):1183-8. PubMed ID: 10552435
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Discovery and structure determination of a novel Maillard-derived sweetness enhancer by application of the comparative taste dilution analysis (cTDA).
    Ottinger H; Soldo T; Hofmann T
    J Agric Food Chem; 2003 Feb; 51(4):1035-41. PubMed ID: 12568569
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantitative studies on the influence of the bean roasting parameters and hot water percolation on the concentrations of bitter compounds in coffee brew.
    Blumberg S; Frank O; Hofmann T
    J Agric Food Chem; 2010 Mar; 58(6):3720-8. PubMed ID: 20180507
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Application of hydrophilic interaction liquid chromatography/comparative taste dilution analysis for identification of a bitter inhibitor by a combinatorial approach based on Maillard reaction chemistry.
    Soldo T; Hofmann T
    J Agric Food Chem; 2005 Nov; 53(23):9165-71. PubMed ID: 16277418
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.