These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
259 related articles for article (PubMed ID: 12188778)
1. Dynamical random graphs with memory. Turova TS Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Jun; 65(6 Pt 2):066102. PubMed ID: 12188778 [TBL] [Abstract][Full Text] [Related]
2. Solvable model for distribution networks on random graphs. Nasiev D; van Mourik J; Kühn R Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Oct; 76(4 Pt 1):041120. PubMed ID: 17994949 [TBL] [Abstract][Full Text] [Related]
3. Are randomly grown graphs really random? Callaway DS; Hopcroft JE; Kleinberg JM; Newman ME; Strogatz SH Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Oct; 64(4 Pt 1):041902. PubMed ID: 11690047 [TBL] [Abstract][Full Text] [Related]
4. Random graph models for directed acyclic networks. Karrer B; Newman ME Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Oct; 80(4 Pt 2):046110. PubMed ID: 19905393 [TBL] [Abstract][Full Text] [Related]
5. Critical space-time networks and geometric phase transitions from frustrated edge antiferromagnetism. Trugenberger CA Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Dec; 92(6):062818. PubMed ID: 26764755 [TBL] [Abstract][Full Text] [Related]
6. Long Paths in First Passage Percolation on the Complete Graph II. Global Branching Dynamics. Eckhoff M; Goodman J; van der Hofstad R; Nardi FR J Stat Phys; 2020; 181(2):364-447. PubMed ID: 32921809 [TBL] [Abstract][Full Text] [Related]
7. Exactly solvable model of a coalescing random graph. Lushnikov AA Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Feb; 91(2):022119. PubMed ID: 25768470 [TBL] [Abstract][Full Text] [Related]
8. Classical dynamics on graphs. Barra F; Gaspard P Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Jun; 63(6 Pt 2):066215. PubMed ID: 11415214 [TBL] [Abstract][Full Text] [Related]
9. Source-enhanced coalescence of trees in a random forest. Lushnikov AA Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Aug; 92(2):022135. PubMed ID: 26382371 [TBL] [Abstract][Full Text] [Related]
10. General formalism for inhomogeneous random graphs. Söderberg B Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Dec; 66(6 Pt 2):066121. PubMed ID: 12513361 [TBL] [Abstract][Full Text] [Related]
11. Correlated percolation and tricriticality. Cao L; Schwarz JM Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Dec; 86(6 Pt 1):061131. PubMed ID: 23367917 [TBL] [Abstract][Full Text] [Related]
12. Robustness of random graphs based on graph spectra. Wu J; Barahona M; Tan YJ; Deng HZ Chaos; 2012 Dec; 22(4):043101. PubMed ID: 23278036 [TBL] [Abstract][Full Text] [Related]
16. Equitable random graphs. Newman ME; Martin T Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Nov; 90(5-1):052824. PubMed ID: 25493850 [TBL] [Abstract][Full Text] [Related]
17. On a phase diagram for random neural networks with embedded spike timing dependent plasticity. Turova TS; Villa AE Biosystems; 2007; 89(1-3):280-6. PubMed ID: 17292539 [TBL] [Abstract][Full Text] [Related]
18. Statistical mechanics of topological phase transitions in networks. Palla G; Derényi I; Farkas I; Vicsek T Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Apr; 69(4 Pt 2):046117. PubMed ID: 15169079 [TBL] [Abstract][Full Text] [Related]
19. Coloring random graphs and maximizing local diversity. Bounkong S; van Mourik J; Saad D Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Nov; 74(5 Pt 2):057101. PubMed ID: 17280022 [TBL] [Abstract][Full Text] [Related]