These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
668 related articles for article (PubMed ID: 12188811)
1. Chaos and the continuum limit in the gravitational N-body problem. II. Nonintegrable potentials. Sideris IV; Kandrup HE Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Jun; 65(6 Pt 2):066203. PubMed ID: 12188811 [TBL] [Abstract][Full Text] [Related]
2. Chaos and the continuum limit in the gravitational N-body problem: integrable potentials. Kandrup HE; Sideris IV Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Nov; 64(5 Pt 2):056209. PubMed ID: 11736056 [TBL] [Abstract][Full Text] [Related]
3. Diffusion and scaling in escapes from two-degrees-of-freedom Hamiltonian systems. Kandrup HE; Siopis C; Contopoulos G; Dvorak R Chaos; 1999 Jun; 9(2):381-392. PubMed ID: 12779836 [TBL] [Abstract][Full Text] [Related]
4. Disentangling regular and chaotic motion in the standard map using complex network analysis of recurrences in phase space. Zou Y; Donner RV; Thiel M; Kurths J Chaos; 2016 Feb; 26(2):023120. PubMed ID: 26931601 [TBL] [Abstract][Full Text] [Related]
5. Scaling investigation for the dynamics of charged particles in an electric field accelerator. Gouve A Ladeira D; Leonel ED Chaos; 2012 Dec; 22(4):043148. PubMed ID: 23278083 [TBL] [Abstract][Full Text] [Related]
6. Analyses of transient chaotic time series. Dhamala M; Lai YC; Kostelich EJ Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Nov; 64(5 Pt 2):056207. PubMed ID: 11736054 [TBL] [Abstract][Full Text] [Related]
7. Multiple returns for some regular and mixing maps. Haydn N; Lunedei E; Rossi L; Turchetti G; Vaienti S Chaos; 2005 Sep; 15(3):33109. PubMed ID: 16252983 [TBL] [Abstract][Full Text] [Related]
8. Time-averaged properties of unstable periodic orbits and chaotic orbits in ordinary differential equation systems. Saiki Y; Yamada M Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Jan; 79(1 Pt 2):015201. PubMed ID: 19257096 [TBL] [Abstract][Full Text] [Related]
9. Unstable periodic orbits and noise in chaos computing. Kia B; Dari A; Ditto WL; Spano ML Chaos; 2011 Dec; 21(4):047520. PubMed ID: 22225394 [TBL] [Abstract][Full Text] [Related]
10. Spectral fluctuations and 1/f noise in the order-chaos transition regime. Santhanam MS; Bandyopadhyay JN Phys Rev Lett; 2005 Sep; 95(11):114101. PubMed ID: 16197006 [TBL] [Abstract][Full Text] [Related]
11. Regular and chaotic dynamics of a piecewise smooth bouncer. Langer CK; Miller BN Chaos; 2015 Jul; 25(7):073114. PubMed ID: 26232965 [TBL] [Abstract][Full Text] [Related]
12. Synchronization in area-preserving maps: Effects of mixed phase space and coherent structures. Mahata S; Das S; Gupte N Phys Rev E; 2016 Jun; 93(6):062212. PubMed ID: 27415260 [TBL] [Abstract][Full Text] [Related]
13. Network analysis of chaotic systems through unstable periodic orbits. Kobayashi MU; Saiki Y Chaos; 2017 Aug; 27(8):081103. PubMed ID: 28863482 [TBL] [Abstract][Full Text] [Related]
14. Characterization of chaos: a new, fast, and effective measure. Sideris IV Ann N Y Acad Sci; 2005 Jun; 1045():79-92. PubMed ID: 15980306 [TBL] [Abstract][Full Text] [Related]
15. Lyapunov Exponent and Out-of-Time-Ordered Correlator's Growth Rate in a Chaotic System. Rozenbaum EB; Ganeshan S; Galitski V Phys Rev Lett; 2017 Feb; 118(8):086801. PubMed ID: 28282154 [TBL] [Abstract][Full Text] [Related]
16. Chaotic scattering by steep repelling potentials. Rapoport A; Rom-Kedar V Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Jan; 77(1 Pt 2):016207. PubMed ID: 18351926 [TBL] [Abstract][Full Text] [Related]
17. Orbital complexity, short-time Lyapunov exponents, and phase space transport in time-independent Hamiltonian systems. Siopis C; Eckstein BL; Kandrup HE Ann N Y Acad Sci; 1998 Dec; 867():41-60. PubMed ID: 12088052 [TBL] [Abstract][Full Text] [Related]
18. Breaking of integrability and conservation leading to Hamiltonian chaotic system and its energy-based coexistence analysis. Qi G; Gou T; Hu J; Chen G Chaos; 2021 Jan; 31(1):013101. PubMed ID: 33754774 [TBL] [Abstract][Full Text] [Related]
19. Characterizing the dynamics of higher dimensional nonintegrable conservative systems. Manchein C; Beims MW; Rost JM Chaos; 2012 Sep; 22(3):033137. PubMed ID: 23020476 [TBL] [Abstract][Full Text] [Related]
20. Periodic orbits in Hamiltonian chaos of the annular billiard. Gouesbet G; Meunier-Guttin-Cluzel S; Grehan G Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Jan; 65(1 Pt 2):016212. PubMed ID: 11800773 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]