These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 12188822)

  • 21. Extreme dissipation and intermittency in turbulence at very high Reynolds numbers.
    Elsinga GE; Ishihara T; Hunt JCR
    Proc Math Phys Eng Sci; 2020 Nov; 476(2243):20200591. PubMed ID: 33362423
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effect of initial conditions on the mean energy dissipation rate and the scaling exponent.
    Antonia RA; Pearson BR
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 2000 Dec; 62(6 Pt A):8086-90. PubMed ID: 11138093
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Estimating the effective Reynolds number in implicit large-eddy simulation.
    Zhou Y; Grinstein FF; Wachtor AJ; Haines BM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jan; 89(1):013303. PubMed ID: 24580356
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Local properties of extended self-similarity in three-dimensional turbulence.
    Fukayama D; Nakano T; Bershadskii A; Gotoh T
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Jul; 64(1 Pt 2):016304. PubMed ID: 11461388
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Enhancement of intermittency in superfluid turbulence.
    Boué L; L'vov V; Pomyalov A; Procaccia I
    Phys Rev Lett; 2013 Jan; 110(1):014502. PubMed ID: 23383797
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Acceleration correlations and pressure structure functions in high-reynolds number turbulence.
    Xu H; Ouellette NT; Vincenzi D; Bodenschatz E
    Phys Rev Lett; 2007 Nov; 99(20):204501. PubMed ID: 18233145
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Intermittency exponent of the turbulent energy cascade.
    Cleve J; Greiner M; Pearson BR; Sreenivasan KR
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Jun; 69(6 Pt 2):066316. PubMed ID: 15244735
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Dissipation-range fluid turbulence and thermal noise.
    Bandak D; Goldenfeld N; Mailybaev AA; Eyink G
    Phys Rev E; 2022 Jun; 105(6-2):065113. PubMed ID: 35854607
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Origin of lagrangian intermittency in drift-wave turbulence.
    Kadoch B; Bos WJ; Schneider K
    Phys Rev Lett; 2010 Oct; 105(14):145001. PubMed ID: 21230837
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Intermittency in the isotropic component of helical and nonhelical turbulent flows.
    Martin LN; Mininni PD
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Jan; 81(1 Pt 2):016310. PubMed ID: 20365463
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Reynolds number of transition and self-organized criticality of strong turbulence.
    Yakhot V
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Oct; 90(4):043019. PubMed ID: 25375605
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A speculative study of 23-order fractional Laplacian modeling of turbulence: some thoughts and conjectures.
    Chen W
    Chaos; 2006 Jun; 16(2):023126. PubMed ID: 16822029
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Forecasting small-scale dynamics of fluid turbulence using deep neural networks.
    Buaria D; Sreenivasan KR
    Proc Natl Acad Sci U S A; 2023 Jul; 120(30):e2305765120. PubMed ID: 37467268
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Velocity structure functions, scaling, and transitions in high-Reynolds-number Couette-Taylor flow.
    Lewis GS; Swinney HL
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 1999 May; 59(5 Pt B):5457-67. PubMed ID: 11969525
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Transient turbulence in Taylor-Couette flow.
    Borrero-Echeverry D; Schatz MF; Tagg R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Feb; 81(2 Pt 2):025301. PubMed ID: 20365623
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Transition to turbulence in Taylor-Couette ferrofluidic flow.
    Altmeyer S; Do Y; Lai YC
    Sci Rep; 2015 Jun; 5():10781. PubMed ID: 26065572
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Information production in homogeneous isotropic turbulence.
    Berera A; Clark D
    Phys Rev E; 2019 Oct; 100(4-1):041101. PubMed ID: 31771016
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Large deviations, singularity, and lognormality of energy dissipation in turbulence.
    Fouxon I; Lee C
    Phys Rev E; 2020 Jun; 101(6-1):061101. PubMed ID: 32688541
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Universal intermittent properties of particle trajectories in highly turbulent flows.
    Arnèodo A; Benzi R; Berg J; Biferale L; Bodenschatz E; Busse A; Calzavarini E; Castaing B; Cencini M; Chevillard L; Fisher RT; Grauer R; Homann H; Lamb D; Lanotte AS; Lévèque E; Lüthi B; Mann J; Mordant N; Müller WC; Ott S; Ouellette NT; Pinton JF; Pope SB; Roux SG; Toschi F; Xu H; Yeung PK;
    Phys Rev Lett; 2008 Jun; 100(25):254504. PubMed ID: 18643666
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Implications of the Monin-Yaglom relation for Rayleigh-Taylor turbulence.
    Soulard O
    Phys Rev Lett; 2012 Dec; 109(25):254501. PubMed ID: 23368468
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.