These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. Angiostatin formation involves disulfide bond reduction and proteolysis in kringle 5 of plasmin. Stathakis P; Lay AJ; Fitzgerald M; Schlieker C; Matthias LJ; Hogg PJ J Biol Chem; 1999 Mar; 274(13):8910-6. PubMed ID: 10085135 [TBL] [Abstract][Full Text] [Related]
5. Generation of angiostatin by reduction and proteolysis of plasmin. Catalysis by a plasmin reductase secreted by cultured cells. Stathakis P; Fitzgerald M; Matthias LJ; Chesterman CN; Hogg PJ J Biol Chem; 1997 Aug; 272(33):20641-5. PubMed ID: 9252380 [TBL] [Abstract][Full Text] [Related]
6. Post-translational control of protein function by disulfide bond cleavage. Cook KM; Hogg PJ Antioxid Redox Signal; 2013 May; 18(15):1987-2015. PubMed ID: 23198756 [TBL] [Abstract][Full Text] [Related]
7. Measurement of reduction of disulfide bonds in plasmin by phosphoglycerate kinase. Lay AJ; Hogg PJ Methods Enzymol; 2002; 348():87-92. PubMed ID: 11885297 [No Abstract] [Full Text] [Related]
11. Disulfide bond cleavage in TEMPO-free radical initiated peptide sequencing mass spectrometry. Lee M; Lee Y; Kang M; Park H; Seong Y; Sung BJ; Moon B; Oh HB J Mass Spectrom; 2011 Aug; 46(8):830-9. PubMed ID: 21834022 [TBL] [Abstract][Full Text] [Related]
12. Online mass spectrometric analysis of proteins/peptides following electrolytic cleavage of disulfide bonds. Zhang Y; Dewald HD; Chen H J Proteome Res; 2011 Mar; 10(3):1293-304. PubMed ID: 21197958 [TBL] [Abstract][Full Text] [Related]
13. Negative selectivity and the evolution of protease cascades: the specificity of plasmin for peptide and protein substrates. Hervio LS; Coombs GS; Bergstrom RC; Trivedi K; Corey DR; Madison EL Chem Biol; 2000 Jun; 7(6):443-53. PubMed ID: 10873836 [TBL] [Abstract][Full Text] [Related]
14. Human pancreas-specific protein disulfide isomerase homolog (PDIp) is redox-regulated through formation of an inter-subunit disulfide bond. Fu X; Zhu BT Arch Biochem Biophys; 2009 May; 485(1):1-9. PubMed ID: 19150607 [TBL] [Abstract][Full Text] [Related]
15. Characterization of disulfide bonds in human nucleoside triphosphate diphosphohydrolase 3 (NTPDase3): implications for NTPDase structural modeling. Ivanenkov VV; Meller J; Kirley TL Biochemistry; 2005 Jun; 44(25):8998-9012. PubMed ID: 15966724 [TBL] [Abstract][Full Text] [Related]
16. Extracellular proteolysis and angiogenesis. Pepper MS Thromb Haemost; 2001 Jul; 86(1):346-55. PubMed ID: 11487024 [TBL] [Abstract][Full Text] [Related]
17. Assay of functional plasminogen in rat plasma applicable to experimental studies of thrombolysis. Bangert K; Thorsen S Thromb Haemost; 2000 Aug; 84(2):299-306. PubMed ID: 10959704 [TBL] [Abstract][Full Text] [Related]
18. Disulfide bonds: protein folding and subcellular protein trafficking. Narayan M FEBS J; 2012 Jul; 279(13):2272-82. PubMed ID: 22594874 [TBL] [Abstract][Full Text] [Related]
19. Protein disulfide bond determination by mass spectrometry. Gorman JJ; Wallis TP; Pitt JJ Mass Spectrom Rev; 2002; 21(3):183-216. PubMed ID: 12476442 [TBL] [Abstract][Full Text] [Related]
20. Disruption of interkringle disulfide bond of plasminogen kringle 1-3 changes the lysine binding capability of kringle 2, but not its antiangiogenic activity. Lee H; Kim HK; Lee JH; You WK; Chung SI; Chang SI; Park MH; Hong YK; Joe YA Arch Biochem Biophys; 2000 Mar; 375(2):359-63. PubMed ID: 10700393 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]